Advertisement

Cerium modification for improving the performance of Cu-SSZ-13 in selective catalytic reduction of NO by NH3

  • Xiaoliang Li
  • Jiangjiang Feng
  • Zhigang Xu
  • Junqiang Wang
  • Yujie Wang
  • Wei ZhaoEmail author
Article
  • 4 Downloads

Abstract

A series of Ce-Cu-SSZ-13 catalysts were synthesized by the ion exchange method based on the Cu-SSZ-13 prepared via a one-pot method and investigated for the selective catalytic reduction by NH3. Compared with Cu-SSZ-13, the catalytic activity and sulfur resistance of Ce-Cu-SSZ-13 were enhanced by modifying with cerium. XRD, N2-BET, MP-AES, XPS, H2-TPR and in situ DRIFTS were carried out to characterize the catalysts. XPS results suggested that more active sites on the surface of Ce-Cu-SSZ-13 catalysts. H2-TPR showed that the redox capacity of the Cu-SSZ-13 catalyst was enhanced after doping with Ce. In situ DRIFTS results demonstrated that the synergistic effect existing between copper and cerium species enhanced the adsorption performance of NH3 and NO + O2 on the catalyst surface. All of the above factors played important roles for achieving the high NH3-SCR performance.

Keywords

Selective catalytic reduction NO NH3 Cu-SSZ-13 Ce modifiy 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21606162).

References

  1. 1.
    Bosch H, Janssen F (1988) Catal Today 2:369–379CrossRefGoogle Scholar
  2. 2.
    Busca G, Lietti L, Ramis G, Berti F (1998) Appl Catal B 18:1–36CrossRefGoogle Scholar
  3. 3.
    Li J, Chang H, Ma L, Hao J, Yang RT (2011) Catal Today 175:147–156CrossRefGoogle Scholar
  4. 4.
    Ren L, Zhu L, Yang C, Chen Y, Sun Q, Zhang H, Li C, Nawaz F, Meng X, Xiao F (2011) Chem Commun 47:9789–9791CrossRefGoogle Scholar
  5. 5.
    Xie L, Liu F, Ren L, Shi X, Xiao F, He H (2013) Environ Sci Technol 48:566–572CrossRefGoogle Scholar
  6. 6.
    Wijayanti K, Leistner K, Chand S, Kumar A, Kamasamudram K, Currier N, Yezerets A, Olsson L (2016) Catal Sci Technol 6:2565–2579CrossRefGoogle Scholar
  7. 7.
    Wijayanti K, Xie K, Kumar A, Kamasamudram K, Olsson L (2017) Appl Catal B 219:142–154CrossRefGoogle Scholar
  8. 8.
    Zhang T, Li J, Liu J, Wang D, Zhao Z, Cheng K, Li J (2015) AIChE J 61:3825–3837CrossRefGoogle Scholar
  9. 9.
    Wang J, Peng Z, Qiao H, Yu H, Hu Y, Chang L, Bao W (2016) Ind Eng Chem Res 55:1174–1182CrossRefGoogle Scholar
  10. 10.
    Usui T, Liu Z, Ibe S, Zhu J, Anand C, Igarashi H, Onaya N, Sasaki Y, Shiramata Y, Tetsuro K, Wakihara T (2018) ACS Catal 8:9165–9173CrossRefGoogle Scholar
  11. 11.
    Li X, Li Y (2014) React Kinet Mech Cat 112:27–36CrossRefGoogle Scholar
  12. 12.
    Zhang P, Hou Q (2016) React Kinet Mech Cat 117:119–128CrossRefGoogle Scholar
  13. 13.
    Shi R, Lin X, Zheng Z, Feng R, Liu Y, Ni L, Yuan B (2018) React Kinet Mech Cat 124:1–11CrossRefGoogle Scholar
  14. 14.
    Zhang P, Hou Q (2016) React Kinet Mech Cat 117:119–128CrossRefGoogle Scholar
  15. 15.
    Zhang R, Li Y, Zhen T (2014) RSC Adv 4:52130–52139CrossRefGoogle Scholar
  16. 16.
    Shen K, Zhang Y, Wang X, Xu H, Sun K, Zhou C (2013) J Energy Chem 22:617–623CrossRefGoogle Scholar
  17. 17.
    Qiu L, Pang D, Zhang C, Meng J, Zhu R, Ouyang F (2015) Appl Surf Sci 357:189–196CrossRefGoogle Scholar
  18. 18.
    Thirupathi B, Smirniotis PG (2011) Appl Catal B 110:195–206CrossRefGoogle Scholar
  19. 19.
    Liu Z, Liu Y, Li Y, Su H, Ma L (2016) Chem Eng J 283:1044–1050CrossRefGoogle Scholar
  20. 20.
    Cao F, Su S, Xiang J, Wang P, Hu S, Sun L, Zhang A (2015) Fuel 139:232–239CrossRefGoogle Scholar
  21. 21.
    Busca G, Larrubia MA, Arrighi L, Ramis G (2005) Catal Today 107:139–148CrossRefGoogle Scholar
  22. 22.
    Xu M, Wang J, Yu T, Wang J, Shen M (2018) Appl Catal B 220:161–170CrossRefGoogle Scholar
  23. 23.
    Zhang B, Zhang S, Liu B, Shen H, Li L (2018) RSC Adv 8:12733–12741CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Zhu X, Shen K, Xu H, Sun K, Zhou C (2012) J Colloid Interf Sci 376:233–238CrossRefGoogle Scholar
  25. 25.
    Passos FB, Aranda DAG, Soares RR, Schmal M (1998) Catal Today 43:3–9CrossRefGoogle Scholar
  26. 26.
    Wang X, Li X, Zhao Q, Sun W, Tade M, Liu S (2016) Chem Eng J 288:216–222CrossRefGoogle Scholar
  27. 27.
    Liu Z, Feng X, Zhou Z, Feng Y, Li J (2018) Appl Surf Sci 428:526–533CrossRefGoogle Scholar
  28. 28.
    Yang N, Guo R, Pan W, Chen Q, Wang Q, Lu C, Wang S (2016) Appl Surf Sci 357:513–518CrossRefGoogle Scholar
  29. 29.
    He H, Zhang C, Yu Y (2004) Catal Today 90:191–197CrossRefGoogle Scholar
  30. 30.
    Zhang L, Cui S, Guo H, Ma X, Luo X (2014) J Mol Catal A 390:14–21CrossRefGoogle Scholar
  31. 31.
    Li Y, Han X, Hou Y, Guo Y, Liu Y, Xiang N, Cui Y, Huang Z (2017) Chin J Catal 38:1831–1841CrossRefGoogle Scholar
  32. 32.
    Wu Z, Jiang B, Liu Y, Wang H, Jin R (2007) Environ Sci Technol 41:5812–5817CrossRefGoogle Scholar
  33. 33.
    Liu Z, Lu Y, Yuan L, Ma L, Zheng L, Zhang J, Hu T (2016) Appl Catal B 188:189–197CrossRefGoogle Scholar
  34. 34.
    Liu Z, Su H, Chen B, Li J, Woo SI (2016) Chem Eng J 299:255–262CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Xiaoliang Li
    • 1
  • Jiangjiang Feng
    • 1
  • Zhigang Xu
    • 1
  • Junqiang Wang
    • 1
  • Yujie Wang
    • 2
  • Wei Zhao
    • 1
    Email author
  1. 1.State Key Laboratory Breeding Base of Coal Science and Technology Co-founded by Shanxi Province and the Ministry of Science and TechnologyTaiyuan University of TechnologyTaiyuanPeople’s Republic of China
  2. 2.School of Material and Chemical EngineeringChuzhou UniversityChuzhouPeople’s Republic of China

Personalised recommendations