1,3-Butadiene production from ethanol–water mixtures over Zn–La–Zr–Si oxide catalyst

  • Olga V. LarinaEmail author
  • Ivan M. Remezovskyi
  • Pavlo I. Kyriienko
  • Sergiy O. Soloviev
  • Svitlana M. Orlyk


Zn–La–Zr–Si oxide composition has been investigated in the ethanol-to-butadiene process using ethanol–water mixtures with different water content. An increase of H2O content in the initial reaction mixture decreases ethanol conversion, 1,3-butadiene selectivity, yield and productivity. The results of in situ FTIR spectroscopy (with ethanol and acetone as probe molecules) have shown the main reason for a decrease in activity of the catalyst to be H2O adsorption on active sites of aldol condensation of acetaldehyde and, to a lesser extent, ethanol dehydrogenation. Zn–La–Zr–Si oxide composition is a highly active and selective catalyst for the ethanol-to-butadiene process when ethanol–water mixture of 80 vol% ethanol and 20 vol% H2O is used, 60% 1,3-butadiene yield is achieved.


Ethanol 1,3-Butadiene H2O effect Lewis acidic site Aldol condensation of acetaldehyde In situ FTIR 



This work was financially supported by programs of National Academy of Sciences of Ukraine KPKVK 6541230 “Support for the development of priority areas of scientific research” (Grant No. 0116U000061) and KPKVK 6541030 “New functional substances and materials of chemical production” (Grant No. 0119U101562).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    White WC (2007) Butadiene production process overview. Chem Biol Interact 166:10–14. CrossRefGoogle Scholar
  2. 2.
    Makshina EV, Dusselier M, Janssens W et al (2014) Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene. Chem Soc Rev 43:7917–7953. CrossRefGoogle Scholar
  3. 3.
    Pomalaza G, Capron M, Ordomsky V, Dumeignil F (2016) Recent breakthroughs in the conversion of ethanol to butadiene. Catalysts 6:203–238. CrossRefGoogle Scholar
  4. 4.
    Angelici C, Weckhuysen BM, Bruijnincx PCA (2013) Chemocatalytic conversion of ethanol into butadiene and other bulk chemicals. ChemSusChem 6:1595–1614. CrossRefGoogle Scholar
  5. 5.
    Jones MD (2014) Catalytic transformation of ethanol into 1,3-butadiene. Chem Cent J 8:53–58. CrossRefGoogle Scholar
  6. 6.
    Mueller P, Wang S-C, Burt S, Hermans I (2017) Influence of metal-doping on the Lewis-acid catalyzed production of butadiene from ethanol studied by modulated operando DRIFTS-MS. ChemCatChem. Google Scholar
  7. 7.
    Taifan W, Yan GX, Baltrusaitis J (2017) Surface chemistry of MgO/SiO2 catalysts during the ethanol catalytic conversion to 1,3-butadiene: in situ DRIFTS and DFT study. Catal Sci Technol 7:4648–4668. CrossRefGoogle Scholar
  8. 8.
    Ochoa JV, Bandinelli C, Vozniuk O et al (2016) An analysis of the chemical, physical and reactivity features of MgO–SiO2 catalysts for butadiene synthesis with the Lebedev process. Green Chem 18:1653–1663. CrossRefGoogle Scholar
  9. 9.
    Chieregato A, Ochoa JV, Bandinelli C et al (2015) On the chemistry of ethanol on basic oxides: revising mechanisms and intermediates in the Lebedev and Guerbet reactions. ChemSusChem 8:377–388. CrossRefGoogle Scholar
  10. 10.
    Sushkevich VL, Ivanova II (2017) Mechanistic study of ethanol conversion into butadiene over silver promoted zirconia catalysts. Appl Catal B 215:36–49. CrossRefGoogle Scholar
  11. 11.
    Zhang H, Ibrahim MYS, Flaherty DW (2018) Aldol condensation among acetaldehyde and ethanol reactants on TiO2: experimental evidence for the kinetically relevant nucleophilic attack of enolates. J Catal 361:290–302. CrossRefGoogle Scholar
  12. 12.
    Patil PT, Liu D, Liu Y et al (2017) Improving 1,3-butadiene yield by Cs promotion in ethanol conversion. Appl Catal A 543:67–74. CrossRefGoogle Scholar
  13. 13.
    Klein A, Keisers K, Palkovits R (2016) Formation of 1,3-butadiene from ethanol in a two-step process using modified zeolite-ß catalysts. Appl Catal A 514:192–202. CrossRefGoogle Scholar
  14. 14.
    Angelici C, Velthoen MEZ, Weckhuysen BM, Bruijnincx PCA (2015) Influence of acid–base properties on the Lebedev ethanol-to-butadiene process catalyzed by SiO2–MgO materials. Catal Sci Technol 5:2869–2879. CrossRefGoogle Scholar
  15. 15.
    Larina OV, Kyriienko PI, Trachevskii VV et al (2016) Effect of mechanochemical treatment on acidic and catalytic properties of MgO-SiO2 composition in the conversion of ethanol to 1,3-butadiene. Theor Exp Chem 51:387–393. CrossRefGoogle Scholar
  16. 16.
    Rossetti I, Lasso J, Compagnoni M et al (2015) H2 production from bioethanol and its use in fuel-cells. Chem Eng Trans 43:229–234. Google Scholar
  17. 17.
    Dastillung R, Fischer B, Jacquin M, Huyghe R (2017) Method for the production of butadiene from ethanol in one low-water- and low-energy-consumption reaction step. US 20170267604 A1 17Google Scholar
  18. 18.
    Rahman MM, Davidson SD, Sun J, Wang Y (2016) Effect of water on ethanol conversion over ZnO. Top Catal 59:37–45. CrossRefGoogle Scholar
  19. 19.
    Zhu Q, Wang B, Tan T (2016) Conversion of ethanol and acetaldehyde to butadiene over MgO–SiO2 catalysts: effect of reaction parameters and interaction between MgO and SiO2 on catalytic performance. ACS Sustain Chem Eng 5:722–733. CrossRefGoogle Scholar
  20. 20.
    Jordison TL, Peereboom L, Miller DJ (2016) Impact of water on condensed phase ethanol Guerbet reactions. Ind Eng Chem Res 55:6579–6585. CrossRefGoogle Scholar
  21. 21.
    Han Z, Li X, Zhang M et al (2015) Sol-gel synthesis of ZrO2-SiO2 catalysts for the transformation of bioethanol and acetaldehyde into 1,3-butadiene. RSC Adv 5:103982–103988. CrossRefGoogle Scholar
  22. 22.
    Jones MD, Keir CG, Di Iulio C et al (2011) Investigations into the conversion of ethanol into 1,3-butadiene. Catal Sci Technol 1:267–272. CrossRefGoogle Scholar
  23. 23.
    Cheong JL, Shao Y, Tan SJR et al (2016) Highly active and selective Zr/MCF catalyst for production of 1,3-butadiene from ethanol in a dual fixed bed reactor system. ACS Sustain Chem Eng 4:4887–4894. CrossRefGoogle Scholar
  24. 24.
    Kurmach MM, Larina OV, Kyriienko PI et al (2018) Hierarchical Zr-MTW zeolites doped with copper as catalysts of ethanol conversion into 1,3-butadiene. ChemistrySelect 3:8539–8546. CrossRefGoogle Scholar
  25. 25.
    Sushkevich VL, Ivanova II, Ordomsky VV, Taarning E (2014) Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol. ChemSusChem 7:2527–2536. CrossRefGoogle Scholar
  26. 26.
    Makshina EV, Janssens W, Sels BF, Jacobs PA (2012) Catalytic study of the conversion of ethanol into 1,3-butadiene. Catal Today 198:338–344. CrossRefGoogle Scholar
  27. 27.
    Larina OV, Kyriienko PI, Soloviev SO (2015) Effect of the addition of zirconium dioxide on the catalytic properties of ZnO/MgO-SiO2 compositions in the production of 1,3-butadiene from ethanol. Theor Exp Chem 51:252–258. CrossRefGoogle Scholar
  28. 28.
    Kyriienko PI, Larina OV, Soloviev SO et al (2017) Ethanol conversion into 1,3-butadiene by the Lebedev method over MTaSiBEA zeolites (M = Ag, Cu, Zn). ACS Sustain Chem Eng 5:2075–2083. CrossRefGoogle Scholar
  29. 29.
    Xu Y, Liu Z, Han Z, Zhang M (2017) Ethanol/acetaldehyde conversion into butadiene over sol–gel ZrO2–SiO2 catalysts doped with ZnO. RSC Adv 7:7140–7149. CrossRefGoogle Scholar
  30. 30.
    Hayashi Y, Akiyama S, Miyaji A et al (2016) Experimental and computational studies of the roles of MgO and Zn in talc for the selective formation of 1,3-butadiene in the conversion of ethanol. Phys Chem Chem Phys 18:25191–25209. CrossRefGoogle Scholar
  31. 31.
    Larina OV, Kyriienko PI, Soloviev SO (2015) Ethanol conversion to 1,3-butadiene on ZnO/MgO–SiO2 catalysts: effect of ZnO content and MgO:SiO2 ratio. Catal Lett 145:1162–1168. CrossRefGoogle Scholar
  32. 32.
    Zhang M, Tan X, Zhang T et al (2018) The deactivation of ZnO doped ZrO2-SiO2 catalyst in the conversion of ethanol/acetaldehyde to 1,3-butadiene. RSC Adv 8:34069–34077. CrossRefGoogle Scholar
  33. 33.
    Lewandowski M, Ochenduszko A, Jones MD (2014) Process for the production of 1,3-butadiene. WO 2014/180778 A1 14Google Scholar
  34. 34.
    Larina OV, Kyriienko PI, Soloviev SO (2016) Effect of lanthanum in Zn-La(-Zr)-Si oxide compositions on their activity in the conversion of ethanol into 1,3-butadiene. Theor Exp Chem. Google Scholar
  35. 35.
    Grim RG, To AT, Farberow CA et al (2019) Growing the bioeconomy through catalysis: a review of recent advancements in the production of fuels and chemicals from syngas-derived intermediates. ACS Catal 9:4145–4172. CrossRefGoogle Scholar
  36. 36.
    Wang S, Iglesia E (2016) Substituent effects and molecular descriptors of reactivity in condensation and esterification reactions of oxygenates on acid-base pairs at TiO2 and ZrO2 surfaces. J Phys Chem C 120:21589–21616. CrossRefGoogle Scholar
  37. 37.
    Akiyama S, Miyaji A, Hayashi Y et al (2018) Selective conversion of ethanol to 1,3-butadiene using germanium talc as catalyst. J Catal 359:184–197. CrossRefGoogle Scholar
  38. 38.
    Rossetti I, Compagnoni M, De Guido G et al (2017) Ethylene production from diluted bioethanol solutions. Can J Chem Eng 95:1752–1759. CrossRefGoogle Scholar
  39. 39.
    Matheus CRV, Chagas LH, Gonzalez GG et al (2018) Synthesis of propene from ethanol: a mechanistic study. ACS Catal 8:7667–7678. CrossRefGoogle Scholar
  40. 40.
    Quesada J, Faba L, Díaz E, Ordóñez S (2017) Role of the surface intermediates in the stability of basic mixed oxides as catalyst for ethanol condensation. Appl Catal A 542:271–281. CrossRefGoogle Scholar
  41. 41.
    Mueller P, Burt SP, Love AM et al (2016) Mechanistic study on the Lewis-acid catalyzed synthesis of 1,3-butadiene over Ta-BEA using modulated operando DRIFTS-MS. ACS Catal 6:6823–6832. CrossRefGoogle Scholar
  42. 42.
    Yan T, Dai W, Wu G et al (2018) Mechanistic insights into one-step catalytic conversion of ethanol to butadiene over bifunctional Zn–Y/beta zeolite. ACS Catal 8:2760–2773. CrossRefGoogle Scholar
  43. 43.
    Zaki MI, Hasan MA, Pasupulety L (2001) Surface reactions of acetone on Al2O3, TiO2, ZrO2, and CeO2: IR spectroscopic assessment of impacts of the surface acid-base properties. Langmuir 17:768–774. CrossRefGoogle Scholar
  44. 44.
    Moteki T, Flaherty DW (2016) Mechanistic insight to C-C bond formation and predictive models for cascade reactions among alcohols on Ca- and Sr-hydroxyapatites. ACS Catal 6:4170–4183. CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.L.V. Pisarzhevskii Institute of Physical ChemistryThe National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations