K2WO4/Al2O3 catalysts for methanethiol synthesis from methanol and H2S: effect of catalyst preparation procedure

  • Shiping ChenEmail author
  • Yuanhua Zhang
  • Liqin Lin
  • Xiaolian Jing
  • Yiquan Yang


A series of the K2WO4/γ–Al2O3 catalysts was prepared with different introducing strategy of the K2WO4 to alumina and characterized by means of N2 adsorption–desorption, XRD, XPS, CO2/NH3-TPD, H2-TPR. It was found that the different introduction strategy of K2WO4 did not change the valence state of surface species of the catalysts but markedly influenced the structures, dispersion of tungsten and potassium species and acid-basic properties. The catalysts prepared by the sol–gel precipitation method exhibit larger surface area, better dispersion of the W species and more favorable acid-basic properties, thus possess higher activity for the reaction, particularly, at the lower reaction temperature of 320 °C, the methanethiol yield was about 8.3% higher than that over the catalyst prepared by traditional impregnation method. As a model catalyst, the catalysts prepared by sol–gel precipitation method show a higher and more stable reactivity with small dosage of water and CS2, and worth in industrial application.


Methanethiol Methanol K2WO4/Al2O3 Introduction strategy Sol–gel alumina 



We gratefully acknowledge the Natural Science Foundation of Fujian Province (2016J05044, 2018J01441).

Supplementary material

11144_2019_1614_MOESM1_ESM.docx (401 kb)
Supplementary material 1 (DOCX 401 kb)


  1. 1.
    Liu P, Lu J, Xu Z, Liu F, Chen D, Yu J (2017) J. Molecul Catal 442:39–48Google Scholar
  2. 2.
    Zhang H, Chen S, Wu M, Fang P, Yang Q (2012) Catal Commun 22:48–51CrossRefGoogle Scholar
  3. 3.
    Cordova A, Blanchard P, Salembier H, Lancelot C, Frémy G, Lemonier C (2017) Catal Today 292:143–153CrossRefGoogle Scholar
  4. 4.
    Wang W, Li Y, Zhang X, Fang W, Yang Y (2015) Catal Commun 69:104–108CrossRefGoogle Scholar
  5. 5.
    Chen S, Zhang H, Wu M, Fang P, Yang Q (2012) Appl Catal A 431–432:151–156CrossRefGoogle Scholar
  6. 6.
    Ponceblanc H, Tamburro F (1998) US Patent 5847223AGoogle Scholar
  7. 7.
    Cook M, Albright E, Savidakis C (1999) US Patent 005874630AGoogle Scholar
  8. 8.
    Möller A, Böck W, Rautenberg S, Hasselbach H, Taugner W, Heinzel H, Zarfl T (2007) US Patent 7199270Google Scholar
  9. 9.
    Brand A, Quaschning V (2007) US Patent 0015941Google Scholar
  10. 10.
    Fonfe B, Fuss S, Wilz F, Jakob H, Weckbecker G (2014) US Patent 0357897 AGoogle Scholar
  11. 11.
    Mashkin Yu (1994) Appl Catal A 45:227–233Google Scholar
  12. 12.
    Mashkina V (1995) Russ Chem Rev 64:1210–1226CrossRefGoogle Scholar
  13. 13.
    Ziolek M, Kujawa J, Saur O, Lavalley C (1993) J Phys Chem 97:9761–9766CrossRefGoogle Scholar
  14. 14.
    Ziolek M, Czyzniewska J, Lamotte J, Lavalley C (1993) Zeolites 16:42–49CrossRefGoogle Scholar
  15. 15.
    Erdőhelyi A, Németh R, Hancz A, Oszkór A (2001) Appl Catal A 211:109–121CrossRefGoogle Scholar
  16. 16.
    Sui R, Lo H, Lavery B, Deering E, Wynnyk G, Chou N, Marriott A (2018) J Phys Chem C 122(9):5141–5150CrossRefGoogle Scholar
  17. 17.
    Ostromecki M, Burcham J, Wachs E, Ramani N, Ekerdt G (1998) J Mol Catal A 132:43–57CrossRefGoogle Scholar
  18. 18.
    Cruz J, Avalos M, López R, Bañares A, Fierro G, Palacios M, López A (2002) Appl Catal A 224:97–110CrossRefGoogle Scholar
  19. 19.
    Katrib A, Logie V, Peter M, Wehrer P, Hilaire L, Maire G (1997) J Chem Phys 94:1923–1937Google Scholar
  20. 20.
    Sajjadi M, Haghighi M (2018) Int J Hydrogen Energ 43(32):15014–15029CrossRefGoogle Scholar
  21. 21.
    Chan S, Wachs E, Murrell L, Dispenziere N (1985) J Catal 92:1–10CrossRefGoogle Scholar
  22. 22.
    Kim T, Burrows A, Kiely J, Wachs E (2007) J Catal 246:370–381CrossRefGoogle Scholar
  23. 23.
    Chen Y, Clet G, Thomas K (2010) Houalla Marwan. J Catal 273:236–244CrossRefGoogle Scholar
  24. 24.
    Bentiez M, Querini A, Fígoli S (2003) Appl Catal A 252:427–436CrossRefGoogle Scholar
  25. 25.
    Benitez M, Fígoli S (2002) Catal Commun 3:487–492CrossRefGoogle Scholar
  26. 26.
    Wachs E, Chersich C, NIenhuis J, Ponec V (1985) Appl Catal 13:335–346CrossRefGoogle Scholar
  27. 27.
    Logie V, Maire G, Michel D, Vignes L (1999) J Catal 188:90–101CrossRefGoogle Scholar
  28. 28.
    Chen J, Mi J, Li K, Wang X, Dominguez E, Cao Y, Maugé F (2017) Ind Eng Chem Res 56(48):14172–14181CrossRefGoogle Scholar
  29. 29.
    Haber J, Stock J, Ungier L (1976) J Sol St Chem 19:113–115CrossRefGoogle Scholar
  30. 30.
    Lucas A, Valverde L, Cañizares P, Rodríguez L (1998) Appl Catal A 172(1):165–176CrossRefGoogle Scholar
  31. 31.
    Karakonstantis L, Matralis H, Kordulis H, Lycourghiotis A (1996) J Catal 162:306–319CrossRefGoogle Scholar
  32. 32.
    Gielgens H, Kampen H, Broek M, Van R, Ponec V (1995) J Catal 154:201–207CrossRefGoogle Scholar
  33. 33.
    Wang J, Bokhimia X, Novaro O, López T, Tzompantzi F, Gómez R, Navarrete J, Lanos E, Salinas E (1999) J Mol Catal A 137:239–252CrossRefGoogle Scholar
  34. 34.
    Keshavarz R, Rezaei M, Yaripour F (1999) J Nat Gas Chem 20:334–338CrossRefGoogle Scholar
  35. 35.
    Mashkina A (2006) Petro Chem 46:28–33CrossRefGoogle Scholar
  36. 36.
    Ziolek M, Czyzniewska J, Kujawa J, Travert A, Mauge F, Lavally J (1998) Microporous Mesoporous Mater 23:45–54CrossRefGoogle Scholar
  37. 37.
    Ziolek M, Kujawa J, Czyzniewska J, Nowak I, Saur O, Lavallwy C (1998) Appl Catal A 171:109–115CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Pharmacy, College of Chemical Engineering and Materials ScienceQuanzhou Normal UniversityQuanzhouPeople’s Republic of China
  2. 2.Shanghai Huafon Material Technology InstituteShanghaiPeople’s Republic of China
  3. 3.Department of Chemistry, College of Chemistry and Chemical Engineering, and National Engineering Laboratory for Green Chemical Productions of Alcohols, Ethers and EstersXiamen UniversityXiamenPeople’s Republic of China

Personalised recommendations