Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 127, Issue 2, pp 1025–1038 | Cite as

Oxidation of ethylene to acetaldehyde by N2O on Na-modified FeZSM-5 zeolite

  • Mikhail V. ParfenovEmail author
  • Larisa V. Pirutko
Article
  • 26 Downloads

Abstract

The oxidation of ethylene to acetaldehyde by N2O on Na-modified FeZSM-5 zeolite in a flow mode was studied at a temperature of 300 to 375 °C and with varying the feed mixture ratio N2O:ethylene:He from 5:5:90 to 5:95:0. It was found that in this range of conditions, acetaldehyde could be produced with selectivity up to 55%. Other reaction products were COx, coke and some amount of unidentified products, which were mostly the result of non-oxidative transformations of ethylene. To study the mechanism of the reaction, we used a quasi-catalytic mode in the temperature range 150–200 °C. The products accumulated on the surface during the reaction in the quasi-catalytic mode could be extracted from the surface and identified using various analytical methods. This approach allowed us to determine that the primary product of ethylene oxidation is ethylene oxide, which then isomerizes into acetaldehyde.

Keywords

N2Ethylene Acetaldehyde Reaction mechanism Quasi-catalytic mode FeZSM-5 

Notes

Acknowledgements

We thank Prof. G.I. Panov for fruitful discussions, N.P. Skorupina for catalyst synthesis, Dr. M.V. Shashkov for GC–MS analysis, and Dr. I.E. Soshnikov for NMR analysis. This work was supported by Ministry of Science and Higher Education of the Russian Federation (Project АААА-А17-117041710083-5).

Supplementary material

11144_2019_1610_MOESM1_ESM.pdf (152 kb)
Supplementary material 1 (PDF 151 kb)

References

  1. 1.
    Smidt J, Hafner W, Jira R et al (1959) Katalytische Umsetzungen von Olefinen an Platinmetall-Verbindungen Das Consortium-Verfahren zur Herstellung von Acetaldehyd. Angew Chem 71:176–182.  https://doi.org/10.1002/ange.19590710503 CrossRefGoogle Scholar
  2. 2.
    Smidt J, Hafner W, Jira R et al (1962) The oxidation of olefins with palladium chloride catalysts. Angew Chem Int Ed Engl 1:80–88.  https://doi.org/10.1002/anie.196200801 CrossRefGoogle Scholar
  3. 3.
    Keith J, Henry P (2009) The mechanism of the Wacker reaction: a tale of two hydroxypalladations. Angew Chem Int Ed 48:9038–9049.  https://doi.org/10.1002/anie.200902194 CrossRefGoogle Scholar
  4. 4.
    Cornell CN, Sigman MS (2007) Recent progress in Wacker oxidations: moving toward molecular oxygen as the sole oxidant. Inorg Chem 46:1903–1909.  https://doi.org/10.1021/ic061858d CrossRefGoogle Scholar
  5. 5.
    Stille JK, Divakaruni R (1978) Stereochemistry of the hydroxypalladation of ethylene. Evidence for trans addition in the wacker process. J Am Chem Soc 100:1303–1304.  https://doi.org/10.1021/ja00472a052 CrossRefGoogle Scholar
  6. 6.
    Darabi HR, Mirzakhani M, Aghapoor K (2015) The supramolecular effect of stilbenophanes on the Wacker oxidation progress: a structure–activity relationship study. J Organomet Chem 786:10–13.  https://doi.org/10.1016/j.jorganchem.2015.02.047 CrossRefGoogle Scholar
  7. 7.
    Wan WK, Zaw K, Henry PM (1982) Evidence for the rate determining step in the wacker reaction. J Mol Catal 16:81–87.  https://doi.org/10.1016/0304-5102(82)80066-7 CrossRefGoogle Scholar
  8. 8.
    Eckert M, Fleischmann G, Jira R, Bolt H (2007) Acetaldehyde. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, New YorkGoogle Scholar
  9. 9.
    Evnin A (1973) Heterogeneously catalyzed vapor-phase oxidation of ethylene to acetaldehyde. J Catal 30:109–117.  https://doi.org/10.1016/0021-9517(73)90057-2 CrossRefGoogle Scholar
  10. 10.
    Fujimoto K, Negami Y, Takahashi T, Kunugi T (1972) Olefin oxidation-palladium salt-active charcoal catalysis. Ind Eng Chem Prod Res Dev 11:303–308.  https://doi.org/10.1021/i360043a010 CrossRefGoogle Scholar
  11. 11.
    Fujimoto K, Takeda H, Kunugi T (1974) Catalytic oxidation of ethylene to acetaldehyde. Palladium chloride-active charcoal catalyst. Ind Eng Chem Prod Res Dev 13:237–242.  https://doi.org/10.1021/i360052a005 CrossRefGoogle Scholar
  12. 12.
    Shaw IS, Dranoff JS, Butt JB (1988) Ethylene oxidation on a supported liquid-phase Wacker catalyst. Ind Eng Chem Res 27:935–942.  https://doi.org/10.1021/ie00078a007 CrossRefGoogle Scholar
  13. 13.
    Barthos R, Hegyessy A, Novodárszki G et al (2017) Structure and activity of Pd/V2O5/TiO2 catalysts in Wacker oxidation of ethylene. Appl Catal Gen 531:96–105.  https://doi.org/10.1016/j.apcata.2016.10.024 CrossRefGoogle Scholar
  14. 14.
    Barthos R, Drotár E, Szegedi Á, Valyon J (2012) Wacker oxidation of ethylene over vanadia nanotube supported Pd catalysts. Mater Res Bull 47:4452–4456.  https://doi.org/10.1016/j.materresbull.2012.09.052 CrossRefGoogle Scholar
  15. 15.
    Barthos R, Hegyessy A, Klébert S, Valyon J (2015) Vanadium dispersion and catalytic activity of Pd/VOx/SBA-15 catalysts in the Wacker oxidation of ethylene. Microporous Mesoporous Mater 207:1–8.  https://doi.org/10.1016/j.micromeso.2014.12.038 CrossRefGoogle Scholar
  16. 16.
    Arai H, Yashiro M (1978) Catalytic oxidation of ethylene using functional quinone-polymer-anchored palladium catalysts. J Mol Catal 3:427–434.  https://doi.org/10.1016/0304-5102(78)85005-6 CrossRefGoogle Scholar
  17. 17.
    Rao V, Datta R (1988) Development of a supported molten-salt Wacker catalyst for the oxidation of ethylene to acetaldehyde. J Catal 114:377–387.  https://doi.org/10.1016/0021-9517(88)90041-3 CrossRefGoogle Scholar
  18. 18.
    Elleuch B, Naccache C, Ben Taarit Y (1984) The dual CuII–PdII–Y zeolite analogue for the Wacker catalyst in the oxidation of olefins. In: Catalysis on the energy scene: proceedings of the 9th Canadian Symposium on Catalysis, Québec, P.Q., September 30–October 3, 1984. Elsevier, Amsterdam, pp 139–145Google Scholar
  19. 19.
    Katz G, Pismen LM (1979) Influence of pore filling on the kinetics of the heterogenized Wacker process. Chem Eng J 18:203–208.  https://doi.org/10.1016/0300-9467(79)80041-6 CrossRefGoogle Scholar
  20. 20.
    Okamoto M, Taniguchi Y (2009) Wacker-type oxidation in vapor phase using a palladium–copper chloride catalyst in a liquid polymer medium supported on silica gel. J Catal 261:195–200.  https://doi.org/10.1016/j.jcat.2008.11.017 CrossRefGoogle Scholar
  21. 21.
    van der Heide E, Zwinkels M, Gerritsen A, Scholten J (1992) Oxidation of ethylene to acetaldehyde over a heterogenized surface-vanadate Wacker catalyst in the absence of gaseous oxygen. Appl Catal Gen 86:181–198.  https://doi.org/10.1016/0926-860X(92)85147-4 CrossRefGoogle Scholar
  22. 22.
    Gerberich H (1970) Catalytic oxidation I. The oxidation of ethylene over Pd and Pd-Au alloys. J Catal 16:204–219.  https://doi.org/10.1016/0021-9517(70)90215-0 CrossRefGoogle Scholar
  23. 23.
    Cant N (1970) Catalytic oxidation II. Silica supported noble metals for the oxidation of ethylene and propylene. J Catal 16:220–231.  https://doi.org/10.1016/0021-9517(70)90216-2 CrossRefGoogle Scholar
  24. 24.
    Frusteri F, Iannibello A, Parmaliana A, et al (1990) Ethylene oxidation over hydrophobic thin layer catalysts. In: New developments in selective oxidation. Elsevier Science Publishers B.V, Amsterdam, pp 733–738Google Scholar
  25. 25.
    Dašić A, Zhao X, Bohme DK (2006) Exploration of the catalytic oxidation of ethylene with N2O mediated by atomic alkaline-earth metal cations. Int J Mass Spectrom 254:155–162.  https://doi.org/10.1016/j.ijms.2006.05.002 CrossRefGoogle Scholar
  26. 26.
    Starokon EV, Parfenov MV, Pirutko LV et al (2014) Epoxidation of ethylene by anion radicals of α-oxygen on the surface of FeZSM-5 zeolite. J Catal 309:453–459.  https://doi.org/10.1016/j.jcat.2013.11.001 CrossRefGoogle Scholar
  27. 27.
    Berrier E, Ovsitser O, Kondratenko E et al (2007) Temperature-dependent N2O decomposition over Fe-ZSM-5: identification of sites with different activity. J Catal 249:67–78.  https://doi.org/10.1016/j.jcat.2007.03.027 CrossRefGoogle Scholar
  28. 28.
    Dubkov KA, Ovanesyan NS, Shteinman AA et al (2002) Evolution of iron states and formation of α-sites upon activation of FeZSM-5 zeolites. J Catal 207:341–352.  https://doi.org/10.1006/jcat.2002.3552 CrossRefGoogle Scholar
  29. 29.
    Pirngruber GD, Grunwaldt J-D, van Bokhoven JA et al (2006) On the presence of Fe(IV) in Fe-ZSM-5 and FeSrO3–x unequivocal detection of the 3d4 spin system by resonant inelastic X-ray scattering. J Phys Chem B 110:18104–18107.  https://doi.org/10.1021/jp063812b CrossRefGoogle Scholar
  30. 30.
    Pirngruber GD, Grunwaldt J-D, Roy PK et al (2007) The nature of the active site in the Fe-ZSM-5/N2O system studied by (resonant) inelastic X-ray scattering. Catal Today 126:127–134.  https://doi.org/10.1016/j.cattod.2006.09.021 CrossRefGoogle Scholar
  31. 31.
    Yuranov I, Bulushev DA, Renken A, Kiwi-Minsker L (2007) Benzene to phenol hydroxylation with N2O over Fe-Beta and Fe-ZSM-5: comparison of activity per Fe-site. Appl Catal Gen 319:128–136.  https://doi.org/10.1016/j.apcata.2006.11.023 CrossRefGoogle Scholar
  32. 32.
    Sun K, Xia H, Feng Z et al (2008) Active sites in Fe/ZSM-5 for nitrous oxide decomposition and benzene hydroxylation with nitrous oxide. J Catal 254:383–396.  https://doi.org/10.1016/j.jcat.2008.01.017 CrossRefGoogle Scholar
  33. 33.
    Ribera A, Arends IWCE, de Vries S et al (2000) Preparation, characterization, and performance of FeZSM-5 for the selective oxidation of benzene to phenol with N2O. J Catal 195:287–297.  https://doi.org/10.1006/jcat.2000.2994 CrossRefGoogle Scholar
  34. 34.
    Perez-Ramirez J, Kumar MS, Bruckner A (2004) Reduction of N2O with CO over FeMFI zeolites: influence of the preparation method on the iron species and catalytic behavior. J Catal 223:13–27.  https://doi.org/10.1016/j.jcat.2004.01.007 CrossRefGoogle Scholar
  35. 35.
    Snyder BER, Vanelderen P, Bols ML et al (2016) The active site of low-temperature methane hydroxylation in iron-containing zeolites. Nature 536:317–321.  https://doi.org/10.1038/nature19059 CrossRefGoogle Scholar
  36. 36.
    Parfenov MV, Starokon EV, Pirutko LV, Panov GI (2014) Quasicatalytic and catalytic oxidation of methane to methanol by nitrous oxide over FeZSM-5 zeolite. J Catal 318:14–21.  https://doi.org/10.1016/j.jcat.2014.07.009 CrossRefGoogle Scholar
  37. 37.
    Panov GI, Starokon EV, Parfenov MV et al (2018) Quasi-catalytic identification of intermediates in the oxidation of propene to acrolein over a multicomponent Bi–Mo catalyst. ACS Catal 8:1173–1177.  https://doi.org/10.1021/acscatal.7b03833 CrossRefGoogle Scholar
  38. 38.
    Starokon EV, Parfenov MV, Pirutko LV et al (2011) Room-temperature oxidation of methane by α-oxygen and extraction of products from the FeZSM-5 surface. J Phys Chem C 115:2155–2161.  https://doi.org/10.1021/jp109906j CrossRefGoogle Scholar
  39. 39.
    Starokon EV, Parfenov MV, Arzumanov SS et al (2013) Oxidation of methane to methanol on the surface of FeZSM-5 zeolite. J Catal 300:47–54.  https://doi.org/10.1016/j.jcat.2012.12.030 CrossRefGoogle Scholar
  40. 40.
    Panov G, Starokon E, Pirutko L et al (2008) New reaction of anion radicals O with water on the surface of FeZSM-5. J Catal 254:110–120.  https://doi.org/10.1016/j.jcat.2007.12.001 CrossRefGoogle Scholar
  41. 41.
    Parfenov MV, Malykhin SE, Pirutko LV et al (2015) Reaction of butyraldehyde formation from ethylene and ethylene oxide on ZSM-5 surface. Res Chem Intermed 41:8735–8745.  https://doi.org/10.1007/s11164-015-1925-5 CrossRefGoogle Scholar
  42. 42.
    Hölderich WF, Barsnick U (2001) Rearrangement of epoxides. In: Sheldon RA, van Bekkum H (eds) Fine chemicals through heterogeneous catalysis. Wiley, New York, p 217Google Scholar
  43. 43.
    Arata K, Tanabe K (1980) Isomerization of cyclohexene oxide over solid acids and bases. Bull Chem Soc Jpn 53:299–303.  https://doi.org/10.1246/bcsj.53.299 CrossRefGoogle Scholar
  44. 44.
    Hölderich WF, van Bekkum H (2001) Chapter 18 Zeolites and related materials in organic syntheses. Brönsted and Lewis catalysis. Stud Surf Sci Catal 137:821–910.  https://doi.org/10.1016/S0167-2991(01)80260-3 CrossRefGoogle Scholar
  45. 45.
    Marc J (2007) Advanced organic chemistry: reaction, mechanism and structure, 6th edn. Wiley, New YorkGoogle Scholar
  46. 46.
    Parmon VN, Panov GI, Uriarte A, Noskov AS (2005) Nitrous oxide in oxidation chemistry and catalysis: application and production. Catal Today 100:115–131.  https://doi.org/10.1016/j.cattod.2004.12.012 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Boreskov Institute of CatalysisNovosibirskRussia

Personalised recommendations