Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 127, Issue 2, pp 825–838 | Cite as

Catalytic N2O decomposition over La(Sr)FeO3 perovskites

  • A. G. MargellouEmail author
  • T. C. Vaimakis
  • P. J. Pomonis
  • D. E. Petrakis
Article
  • 27 Downloads

Abstract

In this study, La1−xSrxFeO3 perovskites with x = 0, 0.25, 0.50, 0.75 and 1.0 have been synthesized via a sol gel auto-combustion method using glycine as fuel. All materials were characterized with x-ray powder diffraction (XRD), N2 porosimetry, scanning electron microscopy (SEM) and O2 Temperature programmed adsorption- desorption (O2/TPA-D). The catalytic activity of perovskites was tested for the decomposition of N2O to N2 and O2 as a probe reaction in a bench scale plug flow reactor. The most active catalyst was La0.75Sr0.25FeO3 and the catalytic activity is strongly correlated to the amount of the reverse oxygen uptake from the perovskite structure. According to the N2O decomposition mechanism the slow and rate determining step was found to be the dissociation of N2O adsorbed on the surface of catalyst as \({\text{N}}_{ 2} {\text{O}}^{ - }_{{({\text{ads}})}}\).

Keywords

N2O decomposition N2O mechanism Perovskites Oxygen uptake 

Notes

Supplementary material

11144_2019_1608_MOESM1_ESM.docx (608 kb)
Supplementary material 1 (DOCX 607 kb)

References

  1. 1.
    Pérez-Ramírez J (2007) Prospects of N2O emission regulations in the European fertilizer industry. Appl Catal B 70(1):31–35.  https://doi.org/10.1016/j.apcatb.2005.11.019 Google Scholar
  2. 2.
    Kondratenko EV, Kondratenko VA, Santiago M, Pérez-Ramírez J (2008) Mechanistic origin of the different activity of Rh-ZSM-5 and Fe-ZSM-5 in N2O decomposition. J Catal 256(2):248–258.  https://doi.org/10.1016/j.jcat.2008.03.016 Google Scholar
  3. 3.
    Zou W, Xie P, Hua W, Wang Y, Kong D, Yue Y, Ma Z, Yang W, Gao Z (2014) Catalytic decomposition of N2O over Cu-ZSM-5 nanosheets. J Mol Catal A 394:83–88.  https://doi.org/10.1016/j.molcata.2014.07.004 Google Scholar
  4. 4.
    Xie P, Ma Z, Zhou H, Huang C, Yue Y, Shen W, Xu H, Hua W, Gao Z (2014) Catalytic decomposition of N2O over Cu-ZSM-11 catalysts. Microporous Mesoporous Mater 191:112–117.  https://doi.org/10.1016/j.micromeso.2014.02.044 Google Scholar
  5. 5.
    Russo N, Fino D, Saracco G, Specchia V (2007) N2O catalytic decomposition over various spinel-type oxides. Catal Today 119(1):228–232.  https://doi.org/10.1016/j.cattod.2006.08.012 Google Scholar
  6. 6.
    Maniak G, Stelmachowski P, Stanek JJ, Kotarba A, Sojka Z (2011) Catalytic properties in N2O decomposition of mixed cobalt-iron spinels. Catal Commun 15(1):127–131.  https://doi.org/10.1016/j.catcom.2011.08.027 Google Scholar
  7. 7.
    Franken T, Palkovits R (2015) Investigation of potassium doped mixed spinels CuxCo3−xO4 as catalysts for an efficient N2O decomposition in real reaction conditions. Appl Catal B 176–177:298–305.  https://doi.org/10.1016/j.apcatb.2015.04.002 Google Scholar
  8. 8.
    Dou Z, Zhang HJ, Pan Y-F, Xu X-F (2014) Catalytic decomposition of N2O over potassium-modified Cu-Co spinel oxides. J Fuel Chem Technol 42(2):238–245.  https://doi.org/10.1016/S1872-5813(14)60016-5 Google Scholar
  9. 9.
    Stelmachowski P, Maniak G, Kotarba A, Sojka Z (2009) Strong electronic promotion of Co3O4 towards N2O decomposition by surface alkali dopants. Catal Commun 10(7):1062–1065.  https://doi.org/10.1016/j.catcom.2008.12.057 Google Scholar
  10. 10.
    Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M (2008) Potassium-doped Co3O4 catalyst for direct decomposition of N2O. Appl Catal B 78(3):242–249.  https://doi.org/10.1016/j.apcatb.2007.09.016 Google Scholar
  11. 11.
    Yan L, Zhang X, Ren T, Zhang H, Wang X, Suo J (2002) Superior performance of nano-Au supported over Co3O4 catalyst in direct N2O decomposition. Chem Commun 8:860–861.  https://doi.org/10.1039/B201237E Google Scholar
  12. 12.
    Xue L, Zhang C, He H, Teraoka Y (2007) Catalytic decomposition of N2O over CeO2 promoted Co3O4 spinel catalyst. Appl Catal B 75(3):167–174.  https://doi.org/10.1016/j.apcatb.2007.04.013 Google Scholar
  13. 13.
    Royer S, Duprez D, Can F, Courtois X, Batiot-Dupeyrat C, Laassiri S, Alamdari H (2014) Perovskites as substitutes of noble metals for heterogeneous catalysis: dream or reality. Chem Rev 114(20):10292–10368.  https://doi.org/10.1021/cr500032a Google Scholar
  14. 14.
    Moure C, Peña O (2015) Recent advances in perovskites: processing and properties. Prog Solid State Chem 43(4):123–148.  https://doi.org/10.1016/j.progsolidstchem.2015.09.001 Google Scholar
  15. 15.
    Yasutake T, Hua-Min Z, Shoichi F, Noboru Y (1985) Oxygen permeation through perovskite-type oxides. Chem Lett 14(11):1743–1746.  https://doi.org/10.1246/cl.1985.1743 Google Scholar
  16. 16.
    Ladavos A, Pomonis P (2015) Methane combustion on perovskites. In: Granger P, Parvulescu VI, Parvulescu VI, Prellier W (eds) Perovskites and related mixed oxides concepts and applications. Wiley, Weinheim, pp 367–388Google Scholar
  17. 17.
    Leontiou AA, Ladavos AK, Bakas TV, Vaimakis TC, Pomonis PJ (2003) Reverse uptake of oxygen from La1−xSrx (Fe3+/Fe4+)O3 ± δ perovskite-type mixed oxides (x = 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, 0.90). Appl Catal A 241(1):143–154.  https://doi.org/10.1016/S0926-860X(02)00458-1 Google Scholar
  18. 18.
    Wu Y, Cordier C, Berrier E, Nuns N, Dujardin C, Granger P (2013) Surface reconstructions of LaCo1−xFexO3 at high temperature during N2O decomposition in realistic exhaust gas composition: impact on the catalytic properties. Appl Catal B 140–141:151–163.  https://doi.org/10.1016/j.apcatb.2013.04.002 Google Scholar
  19. 19.
    Wu Y, Ni X, Beaurain A, Dujardin C, Granger P (2012) Stoichiometric and non-stoichiometric perovskite-based catalysts: consequences on surface properties and on catalytic performances in the decomposition of N2O from nitric acid plants. Appl Catal B 125:149–157.  https://doi.org/10.1016/j.apcatb.2012.05.033 Google Scholar
  20. 20.
    Russo N, Mescia D, Fino D, Saracco G, Specchia V (2007) N2O decomposition over perovskite catalysts. Ind Eng Chem Res 46(12):4226–4231.  https://doi.org/10.1021/ie0612008 Google Scholar
  21. 21.
    Dacquin JP, Lancelot C, Dujardin C, Da Costa P, Djega-Mariadassou G, Beaunier P, Kaliaguine S, Vaudreuil S, Royer S, Granger P (2009) Influence of preparation methods of LaCoO3 on the catalytic performances in the decomposition of N2O. Appl Catal B 91(3):596–604.  https://doi.org/10.1016/j.apcatb.2009.06.032 Google Scholar
  22. 22.
    Leontiou AA, Ladavos AK, Pomonis PJ (2003) Catalytic NO reduction with CO on La1−xSrx(Fe3+/Fe4+)O3±δ perovskite-type mixed oxides (x = 0.00, 0.15, 0.30, 0.40, 0.60, 0.70, 0.80, and 0.90). Appl Catal A 241(1):133–141.  https://doi.org/10.1016/S0926-860X(02)00457-X Google Scholar
  23. 23.
    Belessi VC, Costa CN, Bakas TV, Anastasiadou T, Pomonis PJ, Efstathiou AM (2000) Catalytic behavior of La–Sr−Ce–Fe–O mixed oxidic/perovskitic systems for the NO + CO and NO + CH4 + O2 (lean-NOx) reactions. Catal Today 59(3):347–363.  https://doi.org/10.1016/S0920-5861(00)00300-X Google Scholar
  24. 24.
    Stathopoulos VN, Belessi VC, Bakas TV, Neophytides SG, Costa CN, Pomonis PJ, Efstathiou AM (2009) Comparative study of La–Sr–Fe–O perovskite-type oxides prepared by ceramic and surfactant methods over the CH4 and H2 lean-deNOx. Appl Catal B 93(1):1–11.  https://doi.org/10.1016/j.apcatb.2009.09.003 Google Scholar
  25. 25.
    Gosavi PV, Biniwale RB (2010) Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization. Mater Chem Phys 119(1):324–329.  https://doi.org/10.1016/j.matchemphys.2009.09.005 Google Scholar
  26. 26.
    Tang P, Tong Y, Chen H, Cao F, Pan G (2013) Microwave-assisted synthesis of nanoparticulate perovskite LaFeO3 as a high active visible-light photocatalyst. Curr Appl Phys 13(2):340–343.  https://doi.org/10.1016/j.cap.2012.08.006 Google Scholar
  27. 27.
    Del Toro R, Hernández P, Díaz Y, Brito JL (2013) Synthesis of La0.8Sr0.2FeO3 perovskites nanocrystals by Pechini sol–gel method. Mater Lett 107:231–234.  https://doi.org/10.1016/j.matlet.2013.05.139 Google Scholar
  28. 28.
    Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Heterogeneous catalytic decomposition of nitrous oxide. Appl Catal B 9(1):25–64.  https://doi.org/10.1016/0926-3373(96)90072-7 Google Scholar
  29. 29.
    Winter ERS (1970) The decomposition of nitrous oxide on metallic oxides Part II. J Catal 19(1):32–40.  https://doi.org/10.1016/0021-9517(70)90293-9 Google Scholar
  30. 30.
    Ivanov DV, Pinaeva LG, Isupova LA, Nadeev AN, Prosvirin IP, Dovlitova LS (2011) Insights into the reactivity of La1-xSrxMnO3 (x = 0 ÷ 0.7) in high temperature N2O decomposition. Catal Lett 141(2):322–331Google Scholar
  31. 31.
    Ivanov DV, Sadovskaya EM, Pinaeva LG, Isupova LA (2009) Influence of oxygen mobility on catalytic activity of La–Sr–Mn–O composites in the reaction of high temperature N2O decomposition. J Catal 267(1):5–13.  https://doi.org/10.1016/j.jcat.2009.07.005 Google Scholar
  32. 32.
    Ladavos AJ, Pomonis J (1991) Comparative study of the solid-state and catalytic properties of La2−x SrxNiO perovskites (x = 0.00–1.50) prepared by the nitrate and citrate methods. J Chem Soc, Faraday Trans 87(19):3291.  https://doi.org/10.1039/ft9918703291 Google Scholar
  33. 33.
    Alini S, Basile F, Blasioli S, Rinaldi C, Vaccari A (2007) Development of new catalysts for N2O-decomposition from adipic acid plant. Appl Catal B 70(1):323–329.  https://doi.org/10.1016/j.apcatb.2005.12.031 Google Scholar
  34. 34.
    Kumar S, Teraoka Y, Joshi AG, Rayalu S, Labhsetwar N (2011) Ag promoted La0.8Ba0.2MnO3 type perovskite catalyst for N2O decomposition in the presence of O2, NO and H2O. J Mol Catal A 348(1):42–54.  https://doi.org/10.1016/j.molcata.2011.07.017 Google Scholar
  35. 35.
    Kumar S, Vinu A, Subrt J, Bakardjieva S, Rayalu S, Teraoka Y, Labhsetwar N (2012) Catalytic N2O decomposition on Pr0.8Ba0.2MnO3 type perovskite catalyst for industrial emission control. Catal Today 198(1):125–132.  https://doi.org/10.1016/j.cattod.2012.06.015 Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • A. G. Margellou
    • 1
    Email author
  • T. C. Vaimakis
    • 1
  • P. J. Pomonis
    • 1
  • D. E. Petrakis
    • 1
  1. 1.Department of ChemistryUniversity of IoanninaIoanninaGreece

Personalised recommendations