Reaction Kinetics, Mechanisms and Catalysis

, Volume 127, Issue 2, pp 931–943 | Cite as

Supported Co/activated carbon catalysts for the one-pot synthesis of isophorone diamine from hydroamination of isophorone nitrile

  • Zuojun Wei
  • Haiyan Liu
  • Kuo Zhou
  • Huimin Shu
  • Yingxin LiuEmail author


Supported Co/activated carbon (Co/AC) catalysts were prepared by the incipient wetness impregnation method and applied to the one-pot hydroamination of isophorone nitrile (IPN) into isophorone diamine (IPDA). The 20 wt% Co/AC heat-treated in N2 exhibited superior catalytic performance to the 20 wt% Co/AC heat-treated in H2, by which a maximum 90.2% yield of IPDA was achieved and it could be recycled at least four times. XRD, XPS, TEM and BET has demonstrated that the existence of the fcc form of Co as well as the smaller and more uniformly dispersed Co particles in the Co/AC catalyst heat-treated in N2 may contribute to the excellent catalytic performance.


Carbon reduction Co/AC Hydroamination Isophorone diamine Isophorone nitrile 



This research was supported by the National Natural Science Foundation of China (21878269 and 21476211) and the Natural Science Foundation of Zhejiang province (LY16B060004 and LY18B060016).

Supplementary material

11144_2019_1606_MOESM1_ESM.tif (277 kb)
Supplementary material 1 (TIFF 277 kb)
11144_2019_1606_MOESM2_ESM.pdf (276 kb)
Supplementary material 2 (PDF 276 kb)


  1. 1.
    Fraga F, Vázquez I, Rodríguez-Núñez E, Martínez-Ageitos JM, Miragaya J (2009) Influence of the filler CaCO3 on the cure kinetic of the epoxy network diglycidyl ether of bisphenol a (BADGE n = 0) with isophorone diamine. J Appl Polym Sci 114:3338–3342CrossRefGoogle Scholar
  2. 2.
    Ambrogi V, Brostow W, Carfagna C, Pannico M, Persico P (2012) Plasticizer migration from cross-linked flexible PVC: Effects on tribology and hardness. Polym Eng Sci 52:211–217CrossRefGoogle Scholar
  3. 3.
    Liu Y, Sun K, Ma H, Xu X, Wang X (2010) Cr, Zr-incorporated hydrotalcites and their application in the synthesis of isophorone. Catal Commun 11:880–883CrossRefGoogle Scholar
  4. 4.
    Sardon H, Irusta L, Fernández-Berridi MJ, Luna J, Lansalot M, Bourgeat-Lami E (2011) Waterborne polyurethane dispersions obtained by the acetone process: A study of colloidal features. J Appl Polym Sci 120:2054–2062CrossRefGoogle Scholar
  5. 5.
    Schwarz M, Merkel A, Nitz JJ, Grund G (2014), Process for preparing 3-cyano-3,5,5-trimethylcyclohexanone. WO. 2012171830Google Scholar
  6. 6.
    Lettmann C, Streukens G, Orschel M, Grund G (2014), Process for preparing 3-aminomethyl-3,5,5-trimethylcyclohexylamine. US Patent 8,877,976Google Scholar
  7. 7.
    Ernst M, Hill T, Makarczyk P, Melder JP (2008) Continuous process for the hydrogenation of 3-cyano-3, 5, 5-trimethyl-cyclohexylimine. WO. 2008077852Google Scholar
  8. 8.
    Sánchez MA, Mazzieri VA, Sad MR, Grau R, Pieck CL (2011) Influence of preparation method and boron addition on the metal function properties of Ru Sn catalysts for selective carbonyl hydrogenation. J Chem Technol Biotechnol 86:447–453CrossRefGoogle Scholar
  9. 9.
    Wang L, Wei Z, Liu Y (2013) Analysis of hydroamination products of isophoronenitrile by GC-MS. Petrochem Technol 42:563–567Google Scholar
  10. 10.
    Fischer A, Maciejewski M, Bürgi T, Mallat T, Baiker A (1999) Cobalt-catalyzed amination of 1,3-propanediol: effects of catalyst promotion and use of supercritical ammonia as solvent and reactant. J Catal 183:373–383CrossRefGoogle Scholar
  11. 11.
    Louis K, Beauchene E, Vivier L, Dubois JL, Vigier KDO, Pouilloux PY (2016) Reductive amination of aldehyde ester from vegetable oils to produce amino ester in the presence of anhydrous ammonia. ChemistrySelect 1:2004–2008CrossRefGoogle Scholar
  12. 12.
    Gomez S, Peters JA, Maschmeyer T (2002) The reductive amination of aldehydes and ketones and the hydrogenation of nitriles: mechanistic aspects and selectivity control. Adv Synth Catal 344:1037–1057CrossRefGoogle Scholar
  13. 13.
    Krupka J, Pasek J (2012) Nitrile hydrogenation on solid catalysts—new insights into the reaction mechanism. Curr Org Chem 16:988–1004CrossRefGoogle Scholar
  14. 14.
    Chatterjee M, Ishizaka T, Kawanami H (2016) Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach. Green Chem 18:487–496CrossRefGoogle Scholar
  15. 15.
    Schafer C, Nisanci B, Bere MP, Dastan A, Torok B (2016) Heterogeneous catalytic reductive amination of carbonyl compounds with Ni-Al alloy in water as solvent and hydrogen source. Synthesis 48:3127–3133CrossRefGoogle Scholar
  16. 16.
    Segobia DJ, Trasarti AF, Apesteguia CR (2014) Conversion of butyronitrile to butylamines on noble metals: effect of the solvent on catalyst activity and selectivity. Catal Sci Technol 4:4075–4083CrossRefGoogle Scholar
  17. 17.
    McAllister MI, Boulho C, McMillan L, Gilpin LF, Wiedbrauk S, Brennan C, Lennon D (2018) The production of tyramine via the selective hydrogenation of 4-hydroxybenzyl cyanide over a carbon-supported palladium catalyst. RSC Adv 8:29392–29399CrossRefGoogle Scholar
  18. 18.
    Liu Y, Zhou K, Lu M, Wang L, Wei Z (2015) Synthesis of isophorone diamine and optimization of the reaction conditions. J Chem Eng Chin Univ 29:616–620 (Chinese) Google Scholar
  19. 19.
    Liu Y, Zhou K, Lu M, Wang L, Wei Z, Li X (2015) Acidic/basic oxides-supported cobalt catalysts for one-pot synthesis of isophorone diamine from hydroamination of isophorone nitrile. Ind Eng Chem Res 54:9124–9132CrossRefGoogle Scholar
  20. 20.
    Birkenstock U, Holm R, Reinfandt B, Storp S (1985) Surface analysis of Raney catalysts. J Catal 93:55–67CrossRefGoogle Scholar
  21. 21.
    Cerino PJ, Fleche G, Gallezot P, Salome JP (1991) Activity and stability of promoted Raney-nickel catalysts in glucose hydrogenation. Stud Surf Sci Catal 59:231–236CrossRefGoogle Scholar
  22. 22.
    Liu Y, Yang X, Liu H, Ye Y, Wei Z (2017) Nitrogen-doped mesoporous carbon supported Pt nanoparticles as a highly efficient catalyst for decarboxylation of saturated and unsaturated fatty acids to alkanes. Appl Catal B 218:679–689CrossRefGoogle Scholar
  23. 23.
    Wei Z, Lou J, Su C, Guo D, Liu H, Deng S (2017) An efficient and reusable embedded Ru catalyst for the hydrogenolysis of levulinic acid to -valerolactone. Chemsuschem 10:1720–1732CrossRefGoogle Scholar
  24. 24.
    Zhang J, Wang L, Ji Y, Chen F, Xiao F (2018) Mesoporous zeolites for biofuel upgrading and glycerol conversion. Front Chem Sci Eng 12:132–144CrossRefGoogle Scholar
  25. 25.
    Tang B, Dai W, Sun X, Wu G, Guan N, Hunger M, Li L (2015) Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides. Green Chem 17:1744–1755CrossRefGoogle Scholar
  26. 26.
    Komanoya T, Kinemura T, Kita Y, Kamata K, Hara M (2017) Electronic effect of ruthenium nanoparticles on efficient reductive amination of carbonyl compounds. J Am Chem Soc 139:11493–11499CrossRefGoogle Scholar
  27. 27.
    Yang Y, Jia L, Hou B, Li D, Wang J, Sun Y (2014) The correlation of interfacial interaction and catalytic performance of N-doped mesoporous carbon supported cobalt nanoparticles for Fischer-Tropsch synthesis. J Phys Chem C 118:268–277CrossRefGoogle Scholar
  28. 28.
    Dong B, Guo X, Zhang B, Chen X, Guan J, Qi Y, Han S, Mu X (2015) Heterogeneous Ru-based catalysts for one-pot synthesis of primary amines from aldehydes and ammonia. Catalysts 5:2258–2270CrossRefGoogle Scholar
  29. 29.
    Liu Y, Zhou K, Shu H, Liu H, Lou J, Guo D, Wei Z, Li X (2017) Switchable synthesis of furfurylamine and tetrahydrofurfurylamine from furfuryl alcohol over RANEY® nickel. Catal Sci Technol 7:4129–4135CrossRefGoogle Scholar
  30. 30.
    Fu T, Jiang Y, Lv J, Li Z (2013) Effect of carbon support on Fischer-Tropsch synthesis activity and product distribution over Co-based catalysts. Fuel Process Technol 110:141–149CrossRefGoogle Scholar
  31. 31.
    Wang T, Ding Y, Lue Y, Zhu H, Lin L (2008) Influence of lanthanum on the performance of Zr-Co/activated carbon catalysts in Fischer-Tropsch synthesis. J Nat Gas Chem 17:153–158CrossRefGoogle Scholar
  32. 32.
    Du H, Zhu H, Zhao Z, Dong W, Luo W, Lu W, Jiang M, Liu T, Ding Y (2016) Effects of impregnation strategy on structure and performance of bimetallic CoFe/AC catalysts for higher alcohols synthesis from syngas. Appl Catal A 523:263–271CrossRefGoogle Scholar
  33. 33.
    Wei Z, Lou J, Su C, Guo D, Liu Y, Deng S (2017) An efficient and reusable embedded Ru catalyst for the hydrogenolysis of levulinic acid to γ-valerolactone. Chemsuschem 10:1720–1732CrossRefGoogle Scholar
  34. 34.
    Xiong H, Motchelaho MAM, Moyo M, Jewell LL, Coville NJ (2011) Correlating the preparation and performance of cobalt catalysts supported on carbon nanotubes and carbon spheres in the Fischer-Tropsch synthesis. J Catal 278:26–40CrossRefGoogle Scholar
  35. 35.
    Zhu Z, Lu M, Zhuang Y, Shen D (1999) A comparative study of N2O conversion to N2 over Co/AC and Cu/AC catalysts. Energy Fuels 13:763–772CrossRefGoogle Scholar
  36. 36.
    Lv J, Huang C, Bai S, Jiang Y, Li Z (2012) Thermal decomposition and cobalt species transformation of carbon nanotubes supported cobalt catalyst for Fischer-Tropsch synthesis. J Nat Gas Chem 21:37–42CrossRefGoogle Scholar
  37. 37.
    Xiong H, Moyo M, Rayner MK, Jewell LL, Billing DG, Coville NJ (2010) Autoreduction and catalytic performance of a cobalt Fischer-Tropsch synthesis catalyst supported on nitrogen-doped carbon spheres. ChemCatChem 2:514–518CrossRefGoogle Scholar
  38. 38.
    Dong W, Liu J, Zhu H, Ding Y, Pei Y, Liu J, Du H, Jiang M, Liu T, Su H, Li W (2014) Co-Co2C and Co-Co2C/AC catalysts for hydroformylation of 1-hexene under low pressure: experimental and theoretical studies. J Phys Chem C 118:19114–19122CrossRefGoogle Scholar
  39. 39.
    Xue J, Cui F, Huang Z, Zuo J, Chen J, Xia C (2011) Liquid phase hydrogenolysis of biomass-derived lactate to 1,2-propanediol over silica supported cobalt nanocatalyst. Chin J Chem 29:1319–1325CrossRefGoogle Scholar
  40. 40.
    Morales F, Groot FMFD, Gijzeman OLJ, Mens A, Stephan O, Weckhuysen BM (2005) Mn promotion effects in Co/TiO2 Fischer-Tropsch catalysts as investigated by XPS and STEM-EELS. J Catal 230:301–308CrossRefGoogle Scholar
  41. 41.
    Chen P, Yang F, Kostka A, Xia W (2014) Interaction of cobalt nanoparticles with oxygen- and nitrogen-functionalized carbon nanotubes and impact on nitrobenzene hydrogenation catalysis. ACS Catal 4:1627–1636Google Scholar
  42. 42.
    Jalama K (2016) Fischer-Tropsch synthesis over Co/TiO2 catalyst: effect of catalyst activation by CO compared to H2. Catal Commun 74:71–74CrossRefGoogle Scholar
  43. 43.
    Qian W, Zhang H, Ying W, Fang D (2011) Product distributions of Fischer-Tropsch synthesis over Co/AC catalyst. J Nat Gas Chem 20:389–396CrossRefGoogle Scholar
  44. 44.
    Malobela LJ, Heveling J, Augustyn WG, Cele LM (2014) Nickel-cobalt on carbonaceous supports for the selective catalytic hydrogenation of cinnamaldehyde. Ind Eng Chem Res 53:13910–13919CrossRefGoogle Scholar
  45. 45.
    Bekyarova E, Mehandjiev D (1993) Effect of calcination on Co-impregnated actived carbon. J Colloid Interface Sci 161:115–119CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Zuojun Wei
    • 1
  • Haiyan Liu
    • 1
  • Kuo Zhou
    • 2
  • Huimin Shu
    • 2
  • Yingxin Liu
    • 2
    Email author
  1. 1.Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Research and Development Base of Catalytic Hydrogenation, College of Pharmaceutical ScienceZhejiang University of TechnologyHangzhouPeople’s Republic of China

Personalised recommendations