Advertisement

Pt–Ir/Al2O3 catalysts for the ring opening of naphthenes. Performance as a function of time

  • María A. Vicerich
  • María A. Sánchez
  • Carlos L. Pieck
  • Viviana M. BenitezEmail author
Article
  • 8 Downloads

Abstract

The catalytic performance of a Pt–Ir/Al2O3 catalyst for the selective ring opening of decalin was studied as a function of time. Fresh and used catalysts were evaluated with the reaction tests of cyclohexane dehydrogenation and cyclopentane hydrogenolysis to assess the metal function properties. The transformation of decalin was used as a test reaction for the ring opening of naphthenes. For this test the yield to ring contraction products passed through a maximum at intermediate values of conversion while yields to dehydrogenation, ring opening, and cracking products increased with conversion. Coke deposition also increased with reaction time but its distribution on the metal and acid sites did not change. Coke was more toxic for hydrogenolysis than for de/hydrogenation and therefore the products ratio of (ring opening)/(dehydrogenation) decreased at end of the reaction. Higher yields to dehydrogenated products produced a higher coke deposition while high activity in both hydrogenolysis and dehydrogenation favored the ring opening reaction.

Keywords

Coke Pt–Ir/Al2O3 Selective ring opening 

Notes

References

  1. 1.
    Kustov LM, Finashina ED, Avaev VI, Ershov BG (2018) Decalin ring opening on Pt-Ru/SiO2 catalysts. Fuel Process Technol 173:270–275.  https://doi.org/10.1016/J.FUPROC.2018.02.007 CrossRefGoogle Scholar
  2. 2.
    Peng C, Fang X, Zeng R et al (2016) Commercial analysis of catalytic hydroprocessing technologies in producing diesel and gasoline by light cycle oil. Catal Today 276:11–18.  https://doi.org/10.1016/J.CATTOD.2016.01.017 CrossRefGoogle Scholar
  3. 3.
    Pasadakis N, Karonis D, Mintza A (2011) Detailed compositional study of the light cycle oil (LCO) solvent extraction products. Fuel Process Technol 92:1568–1573.  https://doi.org/10.1016/J.FUPROC.2011.03.023 CrossRefGoogle Scholar
  4. 4.
    Nishijima A, Kameoka T, Sato T et al (1998) Catalyst design and development for upgrading aromatic hydrocarbons. Catal Today 45:261–269.  https://doi.org/10.1016/S0920-5861(98)00226-0 CrossRefGoogle Scholar
  5. 5.
    Santikunaporn M, Herrera JE, Jongpatiwut S et al (2004) Ring opening of decalin and tetralin on HY and Pt/HY zeolite catalysts. J Catal 228:100–113.  https://doi.org/10.1016/j.jcat.2004.08.030 CrossRefGoogle Scholar
  6. 6.
    Santana RC, Do PT, Santikunaporn M et al (2006) Evaluation of different reaction strategies for the improvement of cetane number in diesel fuels. Fuel 85:643–656.  https://doi.org/10.1016/j.fuel.2005.08.028 CrossRefGoogle Scholar
  7. 7.
    Arve K, Mäki-Arvela P, Eränen K et al (2014) Utilisation of a multitubular reactor system for parallel screening of catalysts for ring opening of decalin in continuous mode. Chem Eng J 238:3–8.  https://doi.org/10.1016/J.CEJ.2013.06.101 CrossRefGoogle Scholar
  8. 8.
    Du H, Fairbridge CF, Yang H, Ring Z (2005) The chemistry of selective ring-opening catalysts. Appl Catal A 294:1–21.  https://doi.org/10.1016/j.apcata.2005.06.033 CrossRefGoogle Scholar
  9. 9.
    Monteiro CAA, Costa D, Zotin JL, Cardoso D (2015) Effect of metal–acid site balance on hydroconversion of decalin over Pt/Beta zeolite bifunctional catalysts. Fuel 160:71–79.  https://doi.org/10.1016/J.FUEL.2015.07.054 CrossRefGoogle Scholar
  10. 10.
    McVicker GB, Daage M, Touvelle MS et al (2002) Selective ring opening of naphthenic molecules. J Catal 210:137–148.  https://doi.org/10.1006/jcat.2002.3685 CrossRefGoogle Scholar
  11. 11.
    Kubička D, Kumar N, Mäki-Arvela P et al (2004) Ring opening of decalin over zeolites II. Activity and selectivity of platinum-modified zeolites. J Catal 227:313–327.  https://doi.org/10.1016/j.jcat.2004.07.015 CrossRefGoogle Scholar
  12. 12.
    Mouli KC, Sundaramurthy V, Dalai AK, Ring Z (2007) Selective ring opening of decalin with Pt–Ir on Zr modified MCM-41. Appl Catal A 321:17–26.  https://doi.org/10.1016/J.APCATA.2007.01.031 CrossRefGoogle Scholar
  13. 13.
    Nassreddine S, Massin L, Aouine M et al (2011) Thiotolerant Ir/SiO2–Al2O3 bifunctional catalysts: effect of metal–acid site balance on tetralin hydroconversion. J Catal 278:253–265.  https://doi.org/10.1016/J.JCAT.2010.12.008 CrossRefGoogle Scholar
  14. 14.
    Vicerich MA, Benitez VM, Sánchez MA, Pieck CL (2015) Influence of support material on the activity and selectivity of Pt–Ir catalysts for ring opening reactions. Catal Lett 145:910–918.  https://doi.org/10.1007/s10562-014-1459-2 CrossRefGoogle Scholar
  15. 15.
    Vicerich MA, Benitez VM, Especel C et al (2013) Influence of iridium content on the behavior of Pt–Ir/Al2O3 and Pt–Ir/TiO2 catalysts for selective ring opening of naphthenes. Appl Catal A 453:167–174.  https://doi.org/10.1016/j.apcata.2012.12.015 CrossRefGoogle Scholar
  16. 16.
    Vicerich MA, Oportus M, Benitez VM et al (2014) Influence of Na content on the catalytic properties of Pt–Ir/Al2O3 catalysts for selective ring opening of decalin. Appl Catal A 480:42–49.  https://doi.org/10.1016/j.apcata.2014.04.036 CrossRefGoogle Scholar
  17. 17.
    Nylén U, Sassu L, Melis S et al (2006) Catalytic ring opening of naphthenic structures: part I. From laboratory catalyst screening via pilot unit testing to industrial application for upgrading LCO into a high-quality diesel-blending component. Appl Catal A 299:1–13.  https://doi.org/10.1016/j.apcata.2005.09.023 CrossRefGoogle Scholar
  18. 18.
    Lee K, Lee S, Jun Y, Choi M (2017) Cooperative effects of zeolite mesoporosity and defect sites on the amount and location of coke formation and its consequence in deactivation. J Catal 347:222–230.  https://doi.org/10.1016/j.jcat.2017.01.018 CrossRefGoogle Scholar
  19. 19.
    Liu X, Smith KJ (2008) Acidity and deactivation of Mo2C/HY catalysts used for the hydrogenation and ring opening of naphthalene. Appl Catal A 335:230–240.  https://doi.org/10.1016/J.APCATA.2007.11.028 CrossRefGoogle Scholar
  20. 20.
    Argyle M, Bartholomew C (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5:145–269.  https://doi.org/10.3390/catal5010145 CrossRefGoogle Scholar
  21. 21.
    Blanco E, Piccolo L, Laurenti D et al (2018) Effect of H2S on the mechanisms of naphthene ring opening and isomerization over Ir/NaY: a comparative study of decalin, perhydroindan and butylcyclohexane hydroconversions. Appl Catal A 550:274–283.  https://doi.org/10.1016/j.apcata.2017.11.020 CrossRefGoogle Scholar
  22. 22.
    Arribas MA, Concepción P, Martínez A (2004) The role of metal sites during the coupled hydrogenation and ring opening of tetralin on bifunctional Pt(Ir)/USY catalysts. Appl Catal A 267:111–119.  https://doi.org/10.1016/j.apcata.2004.02.037 CrossRefGoogle Scholar
  23. 23.
    di Felice L, Catherin N, Piccolo L et al (2016) Decalin ring opening over NiWS/SiO2-Al2O3 catalysts in the presence of H2S. Appl Catal A 512:43–51.  https://doi.org/10.1016/j.apcata.2015.12.007 CrossRefGoogle Scholar
  24. 24.
    Alzaid AH, Smith KJ (2013) The kinetics of decalin ring opening over a Ir/H-Beta catalyst. Appl Catal A 450:243–252.  https://doi.org/10.1016/j.apcata.2012.10.010 CrossRefGoogle Scholar
  25. 25.
    Mouli KC, Sundaramurthy V, Dalai AK (2009) A comparison between ring-opening of decalin on Ir–Pt and Ni–Mo carbide catalysts supported on zeolites. J Mol Catal A 304:77–84.  https://doi.org/10.1016/J.MOLCATA.2009.01.027 CrossRefGoogle Scholar
  26. 26.
    Calemma V, Giardino R, Ferrari M (2010) Upgrading of LCO by partial hydrogenation of aromatics and ring opening of naphthenes over bi-functional catalysts. Fuel Proc Technol 91:770–776.  https://doi.org/10.1016/j.fuproc.2010.02.012 CrossRefGoogle Scholar
  27. 27.
    Parera JM, Fígoli NS (1995) Reactions in the commercial reformer, chapter 3. In: Antos GJ, Aitani AM, Parera JM (eds) Catalytic naphtha reforming: science and technology. Marcel Dekker Inc., New York, pp 45–78Google Scholar
  28. 28.
    Decroocq D (1984) Physico-chemical characteristics of hydrocarbons cracking, chapter 2. In: Decroocq D (ed) Catalytic cracking of heavy petroleum fractions. Editions Technip, Paris, pp 27–36Google Scholar
  29. 29.
    Coq B, Figueras F (1984) Conversion of methylcyclopentane on platinum-tin reforming catalysts. J Catal 85:197–205.  https://doi.org/10.1016/0021-9517(84)90123-4 CrossRefGoogle Scholar
  30. 30.
    Ribeiro FH, Bonivardi AL, Kim C, Somorjai GA (1994) Transformation of platinum into a stable, high-temperature, dehydrogenation-hydrogenation catalyst by ensemble size reduction with rhenium and sulfur. J Catal 150:186–198.  https://doi.org/10.1006/JCAT.1994.1335 CrossRefGoogle Scholar
  31. 31.
    Biloen P, Dautzenberg FM, Sachtler WMH (1977) Catalytic dehydrogenation of propane to propene over platinum and platinum-gold alloys. J Catal 50:77–86.  https://doi.org/10.1016/0021-9517(77)90010-0 CrossRefGoogle Scholar
  32. 32.
    Gault FG (1981) Mechanisms of skeletal isomerization of hydrocarbons on metals. Adv Catal 30:1–95.  https://doi.org/10.1016/S0360-0564(08)60325-9 Google Scholar
  33. 33.
    Vu BK, Song MB, Ahn IY et al (2011) Location and structure of coke generated over Pt–Sn/Al2O3 in propane dehydrogenation. J Ind Eng Chem 17:71–76.  https://doi.org/10.1016/j.jiec.2010.10.011 CrossRefGoogle Scholar
  34. 34.
    Parera JM, Figoli NS, Traffano EM et al (1983) The influence of coke deposition on the functions of a Pt/Al2O3-Cl bifunctional catalyst. Appl Catal 5:33–41.  https://doi.org/10.1016/0166-9834(83)80293-0 CrossRefGoogle Scholar
  35. 35.
    Barbier J, Marecot P, Martin N et al (1980) Selective poisoning by coke formation on Pt/Al2O3. Stud Surf Sci Catal 6:53–62.  https://doi.org/10.1016/S0167-2991(08)65218-0 CrossRefGoogle Scholar
  36. 36.
    Zharkov BB, Galperin LB, Medzhinskii VL et al (1986) Some peculiarities of coke formation and burning on catalysts for reforming. React Kinet Catal Lett 32:457–462.  https://doi.org/10.1007/BF02068351 CrossRefGoogle Scholar
  37. 37.
    Pieck CL, Marecot P, Parera JM, Barbier J (1995) Influence of chlorine content on Pt–Re interaction and coke deposition. Appl Catal A 126:153–163.  https://doi.org/10.1016/0926-860X(95)00033-X CrossRefGoogle Scholar
  38. 38.
    Guenin M, Breysse M, Frety R et al (1987) Resistance to sulfur poisoning of metal catalysts. Dehydrogenation of cyclohexane on Pt Al2O3 catalysts. J Catal 105:144–154.  https://doi.org/10.1016/0021-9517(87)90014-5 CrossRefGoogle Scholar
  39. 39.
    Cooper BJ, Trimm DL (1980) The coking of platinum/alumina reforming catalysts. Stud Surf Sci Catal 6:63–71.  https://doi.org/10.1016/S0167-2991(08)65219-2 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones en Catálisis y Petroquímica (INCAPE)/CONICET/Facultad de Ingeniería Química-Universidad Nacional del LitoralSanta FeArgentina

Personalised recommendations