Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 127, Issue 2, pp 803–823 | Cite as

Fast and simple synthesis of hierarchical ZSM-11 and its performance in the cofeeding reaction of methanol and n-hexane

  • Shumei Wei
  • Yarong Xu
  • Chi Che
  • Kake Zhu
  • Zhaoyang Jin
  • Xuedong ZhuEmail author
Article
  • 15 Downloads

Abstract

The co-conversion of short chain n-paraffins and methanol into value added gasoline pool molecules with high octane numbers is an attractive route for gasoline upgrading. Hierarchical ZSM-11 zeolite was synthesized by a fast and simple method, and samples were characterized by XRD, N2 adsorption–desorption, SEM, NH3-TPD and Py-IR analysis. It was found that the hierarchical ZSM-11 possessed small particle sizes, large surface area and abundant mesopores. Catalytic conversion of co-feeding n-hexane and methanol into hydrocarbons was explored using prepared hierarchical ZSM-11 as solid acid catalyst in a fixed bed under the condition of 380 °C, 1 h−1 (methanol was 1 h−1 and n-hexane was 0.43 h−1), atmospheric pressure, and compared with that of each individual feed. Compared to methanol-to-gasoline process, the final boiling point of the product mixture was reduced by a factor of 23 °C and meet the requirements of standard gasoline end distillation. Compared to the n-hexane cracking in the absence of methanol, a high liquid yield was obtained.

Keywords

Cofeeding Hierarchical ZSM-11 Methanol n-Hexane Synthesis 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21776076) and Technology admin. Department of Petrochina Company Limited.

References

  1. 1.
    Olah GA (2005) Chem Int Ed 44:2636–2639CrossRefGoogle Scholar
  2. 2.
    Bjørgen M, Joensen F, Spangsberg H, Olsbye U, Lillerud K, Svelle S (2008) Appl Catal A 345:43–50CrossRefGoogle Scholar
  3. 3.
    Ilias S, Bhan A (2013) ACS Catal 44:18–31CrossRefGoogle Scholar
  4. 4.
    Ilias S, Bhan A (2012) J Catal 290:186–192CrossRefGoogle Scholar
  5. 5.
    Yu Q, Meng X, Liu J, Li C, Cui Q (2013) Microporous Mesoporous Mater 181:192–200CrossRefGoogle Scholar
  6. 6.
    Luo G, McDonald A (2014) Energy Fuels 28:600–606CrossRefGoogle Scholar
  7. 7.
    Wang G, Xu C, Gao J (2008) Fuel Process Technol 89:864–873CrossRefGoogle Scholar
  8. 8.
    Tuktin B, Nurgaliyev N, Tenizbayeva A, Shapovalov A (2017) Orient J Chem 33:1799–1804CrossRefGoogle Scholar
  9. 9.
    Lücke B, Martin A, Günschel H, Nowak S (1999) Microporous Mesoporous Mater 29:145–157CrossRefGoogle Scholar
  10. 10.
    Song C, Liu K, Zhang D, Liu S, Li X, Xie S, Xu L (2014) Appl Catal A 470:15–23CrossRefGoogle Scholar
  11. 11.
    Song C, Li X, Zhu X, Liu S, Chen F, Liu F, Xu L (2016) Appl Catal A 519:48–55CrossRefGoogle Scholar
  12. 12.
    Aguayo A, Castaño P, Mier D, Gayubo A, Olazar M, Bilbao J (2011) Ind Eng Chem Res 50:9980–9988CrossRefGoogle Scholar
  13. 13.
    Svelle S, Rønning P, Olsbye U, Kolboe S (2005) J Catal 234:385–400CrossRefGoogle Scholar
  14. 14.
    Gong T, Zhang X, Bai T, Zhang Q, Tao L, Qi M, Duan C, Zhang L (2012) Ind Eng Chem Res 51:13589–13598CrossRefGoogle Scholar
  15. 15.
    Chang F, Wei Y, Liu X, Zhao Y, Xu L, Sun Y, Zhang D, He Y, Liu Z (2007) Appl Catal A 328:163–173CrossRefGoogle Scholar
  16. 16.
    Mier D, Aguayo A, Gayubo A, Olazar M, Bilbo J (2010) Chem Eng J 160:760–769CrossRefGoogle Scholar
  17. 17.
    Mier D, Gayubo A, Aguayo A, Olazar M, Bilbao J (2011) AIChE J 57:2840–2853CrossRefGoogle Scholar
  18. 18.
    Su C, Qian W, Xie Q, Cui Y, Tang X, Yu X, Wang T, Huang X, Wei F (2016) Catal Today 264:63–69CrossRefGoogle Scholar
  19. 19.
    Yang K, Zhu L, Zhang J, Huo X, Lai W, Lian Y, Fang W (2018) Catalysts 307:3–20Google Scholar
  20. 20.
    Dai W, Yang L, Wang C, Wang X, Wu G, Guan N, Obenaus U, Hunger M, Li L (2018) ACS Catal 8:1352–1362CrossRefGoogle Scholar
  21. 21.
    Kokotailo G, Chu P, Lawton S, Meier W (1978) Nature 275:119–120CrossRefGoogle Scholar
  22. 22.
    Wei Z, Zhu K, Xing L, Yang F, Li Y, Xu Y, Zhu X (2017) RSC Adv 7:24015–24021CrossRefGoogle Scholar
  23. 23.
    Song B, Li Y, Cao G, Sun Z, Han X (2017) Front Chem Sci Eng 11:1–11CrossRefGoogle Scholar
  24. 24.
    Wei Z, Xia T, Liu M, Cao Q, Xu Y, Zhu K, Zhu X (2015) Front Chem Sci Eng 9:450–460CrossRefGoogle Scholar
  25. 25.
    Wang X, Chen H, Meng F, Gao F, Sun C, Sun L, Wang S, Wang L, Wang Y (2017) Microporous Mesoporous Mater 243:271–280CrossRefGoogle Scholar
  26. 26.
    Stepacheva A, Doluda V, Lakina N, Molchanov V, Sidorov A, Matveeva V, Sulman M, Sulman E (2018) Reac Kinet Mech Cat 124:807–822CrossRefGoogle Scholar
  27. 27.
    Strizhak P, Zhokh A, Trypolskyi A (2018) Reac Kinet Mech Cat 123:247–268CrossRefGoogle Scholar
  28. 28.
    Meng X, Yu Q, Gao Y, Zhang Q, Li C, Cui Q (2015) Catal Commun 61:67–75CrossRefGoogle Scholar
  29. 29.
    Maesen T, Schenk M, Vlugt T, Smit B (2001) J Catal 203:281–291CrossRefGoogle Scholar
  30. 30.
    Wang X, Gao F, Meng F, Wang Y, Chen H, Li H, Sun C, Wang L, Wang S, Wang C, Zhang X (2017) React Kinet Mech Cat 122:1231CrossRefGoogle Scholar
  31. 31.
    Zhang W, Gao S, Xie S, Liu H, Zhu X, Shang Y, Liu S, Xu L, Zhang Y (2017) Chin J Catal 38:168–175CrossRefGoogle Scholar
  32. 32.
    Dey K, Ghosh S, Naskar M (2012) Mater Lett 87:87–89CrossRefGoogle Scholar
  33. 33.
    Brunauer S, Emmett P, Teller E (1938) JACS 60:309–319CrossRefGoogle Scholar
  34. 34.
    De B, Linsen B, Osinga T (1965) J Catal 4:319–323CrossRefGoogle Scholar
  35. 35.
    Hughes T, White H (1967) J Phys Chem 71:2192–2201CrossRefGoogle Scholar
  36. 36.
    Emeis C (1993) J Catal 141:347–35433CrossRefGoogle Scholar
  37. 37.
    Zhang X, Wang J, Zhong J, Liu A, Gao L (2008) Microporous Mesoporous Mater 108:13–21CrossRefGoogle Scholar
  38. 38.
    Thibault-Starzyk F, Stan I, Abelló S, Bonilla A, Thomas K, Fernandez C, Gilson J, Pérez-Ramírez J (2009) J Catal 264:11–14CrossRefGoogle Scholar
  39. 39.
    Khitev Y, Kolyagin U, Ivanova I, Ponomareva O, Thibault-Staryk F, Gilson J, Fernandez C, Fajula F (2011) Microporous Mesoporous Mater 146:201–207CrossRefGoogle Scholar
  40. 40.
    Bleken F, Barbera K, Bonino F, Olsbye U, Lillerud K, Bordiga S, Beato P, Janssens T, Svelle S (2013) J Catal 307:62–73CrossRefGoogle Scholar
  41. 41.
    Noor P, Khanmohammadi M, Roozbehani B, Yaripour F, Garmarudi A (2018) J Energy Chem 27:582–590CrossRefGoogle Scholar
  42. 42.
    Wang Z, Li G, Wang C, Yang H, Zhang D (2018) Catal Today 314:107–113CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Shumei Wei
    • 1
    • 2
  • Yarong Xu
    • 2
  • Chi Che
    • 2
  • Kake Zhu
    • 1
  • Zhaoyang Jin
    • 1
  • Xuedong Zhu
    • 1
    Email author
  1. 1.State Key Laboratory of Chemical Engineering, School of Chemical EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Research Institute of Urumqi Petrochemical CompanyPetrochina Company LimitedUrumqiPeople’s Republic of China

Personalised recommendations