Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 127, Issue 2, pp 1005–1023 | Cite as

Adsorption of phenol from cigarette smoke using CoAPO-11

  • Zhihua Liu
  • Chen Yang
  • Qingye Zheng
  • Pei He
  • Yaming WangEmail author
Article
  • 16 Downloads

Abstract

In this paper, the cobalt-substituted aluminophosphate CoAPO-11 was prepared and utilized for the adsorption of phenol in cigarette smoke. XRD, XPS, SEM, TPD and N2-sorption results suggested that the product possessed highly crystallized AEL topology with mesoporous structure, and the existence of Co in the framework provided acid sites and base sites to the sample. The adsorption kinetic data were modeled through the pseudo-first-order and pseudo-second-order kinetic equations using linear and non-linear methods, and the result demonstrated that the adsorption character of phenol on CoAPO-11 obeyed the pseudo-second-order kinetic model and the adsorption process occurred via film and intra-particle diffusion. The CoAPO-11’s adsorption capacity for phenol was generally positively correlated with its specific surface area and pore volume, and it could reduce the content of phenol in the cigarette smoke by 23%. In addition, it was effective for reducing HCN and croton aldehyde, which evidenced it an excellent multifunctional adsorbent for cigarette smoke.

Keywords

CoAPO-11 Adsorption Phenol Cigarette smoke Kinetics 

Notes

Acknowledgements

This work was funded by research grants from the National Natural Science Foundation of China (Grant No. U1202265).

References

  1. 1.
    Yang M, Huang Y, Cao H, Lin Y, Cheng X, Wang X (2016) A novel polymeric adsorbent by a self-doped manner: synthesis, characterization, and adsorption performance to phenol from aqueous solution. Polym Bull 73(8):2321–2341CrossRefGoogle Scholar
  2. 2.
    Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface Sci 143(1):48–67CrossRefGoogle Scholar
  3. 3.
    Huang JH, Huang KL, Wang AT, Yang Q (2008) Adsorption characteristics of poly(styrene-co-divinylbenzene) resin functionalized with methoxy and phenoxy groups for phenol. J Colloid Interface Sci 327(2):302–307CrossRefGoogle Scholar
  4. 4.
    Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM (1982) Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J Am Chem Soc 104(4):1146–1147CrossRefGoogle Scholar
  5. 5.
    Jhung SH, Kim HK, Woong Yoon J, Chang JS (2006) Low-temperature adsorption of hydrogen on nanoporous aluminophosphates: effect of pore size. J Phys Chem B 110(19):9371–9374CrossRefGoogle Scholar
  6. 6.
    Yang C, Jiang L, Wang H, Zheng Y, Wang Y (2018) Process optimization for selective hydrogenation of α-pinene over Ni/AlPO4. Korean J Chem Eng 35(2):409–420CrossRefGoogle Scholar
  7. 7.
    Chatterjee S, Bhanja P, Paul L, Ali M, Bhaumik A (2017) MnAPO-5 as an efficient heterogeneous catalyst for selective liquid phase partial oxidation reactions. Dalton Trans 47(3):791–798CrossRefGoogle Scholar
  8. 8.
    Zhao X, Zhang X, Hao Z, Gao X, Liu Z (2018) Synthesis of FeAPO-5 molecular sieves with high iron contents via improved ionothermal method and their catalytic performances in phenol hydroxylation. J Porous Mater 25(4):1007–1016CrossRefGoogle Scholar
  9. 9.
    Das SK, Bhunia MK, Bhaumik A (2012) Solvothermal synthesis of mesoporous aluminophosphate for polluted water remediation. Microporous Mesoporous Mater 155:258–264CrossRefGoogle Scholar
  10. 10.
    Dai P-SE, Petty RH, Ingram CW, Szostak R (1996) Metal substituted aluminophosphate molecular sieves as phenol hydroxylation catalysts. Appl Catal A 143(1):101–110CrossRefGoogle Scholar
  11. 11.
    Li J, Tan Y, Zhang Q, Han Y (2010) Characterization of an HZSM-5/MnAPO-11 composite and its catalytic properties in the synthesis of high-octane hydrocarbons from syngas. Fuel 89(11):3510–3516CrossRefGoogle Scholar
  12. 12.
    Pan D, Wang Y, Zhong S, Jiang L (2017) Optimization of Ni-P/APO-11 amorphous catalyst for catalytic hydrogenation of turpentine using response surface methodology. CIESC J 68(6):2376–2385Google Scholar
  13. 13.
    Wang ZM, Yan ZF (2003) Skeletal isomerization of butene on Si, Zr-substituted aluminum phosphate zeolites. Acta Phys Chim Sin 19(3):216–220Google Scholar
  14. 14.
    Delgado JA, Agueda VI, Uguina MA, Sotelo JL, Fernandez P (2013) Adsorption and diffusion of nitrogen, methane and carbon dioxide in aluminophosphate molecular sieve AlPO4-11. Adsorption 19(2–4):407–422CrossRefGoogle Scholar
  15. 15.
    Carreon ML, Li S, Carreon MA (2012) AlPO-18 membranes for CO2/CH4 separation. Chem Commun 48(17):2310–2312CrossRefGoogle Scholar
  16. 16.
    Akhtar F, Keshavarzi N, Shakarova D, Cheung O, Hedin N, Bergstrom L (2014) Aluminophosphate monoliths with high CO2-over-N2 selectivity and CO2 capture capacity. RSC Adv 4(99):55877–55883CrossRefGoogle Scholar
  17. 17.
    Liu Q, Cheung NCO, Garcia-Bennett AE, Hedin N (2011) Aluminophosphates for CO2 separation. Chemsuschem 4(1):91–97CrossRefGoogle Scholar
  18. 18.
    Kannan C, Muthuraja K, Devi MR (2013) Hazardous dyes removal from aqueous solution over mesoporous aluminophosphate with textural porosity by adsorption. J Hazard Mater 244–245(2):10–20CrossRefGoogle Scholar
  19. 19.
    Muthuraja K, Kannan C (2013) Kinetic and isotherm studies of removal of metanil yellow dye on mesoporous aluminophosphate molecular sieves. Chem Sci Trans 2(S1):195–201Google Scholar
  20. 20.
    International Standard ISO 3308 Routine analytical cigarette-smoking machine—definitions and standard conditionsGoogle Scholar
  21. 21.
    Karim AH, Jalil AA, Triwahyono S, Sidik SM, Kamarudin NHN, Jusoh R, Jusoh NWC, Hameed BH (2012) Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. J Colloid Interface Sci 386(1):307–314CrossRefGoogle Scholar
  22. 22.
    Salvestrini S (2018) Analysis of the Langmuir rate equation in its differential and integrated form for adsorption processes and a comparison with the pseudo first and pseudo second order models. React Kinet Mech Catal 123(2):455–472CrossRefGoogle Scholar
  23. 23.
    Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39Google Scholar
  24. 24.
    Chang M-Y, Juang R-S (2004) Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J Colloid Interface Sci 278(1):18–25CrossRefGoogle Scholar
  25. 25.
    Ho YS, Mckay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465CrossRefGoogle Scholar
  26. 26.
    Kavitha D, Namasivayam C (2007) Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresour Technol 98(1):14–21CrossRefGoogle Scholar
  27. 27.
    Doğan M, Alkan M, Türkyilmaz A, Ozdemir Y (2004) Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. J Hazard Mater 109(1):141–148CrossRefGoogle Scholar
  28. 28.
    Sheha RR, El-Zahhar AA (2008) Synthesis of some ferromagnetic composite resins and their metal removal characteristics in aqueous solutions. J Hazard Mater 150(3):795–803CrossRefGoogle Scholar
  29. 29.
    Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. ASCE Sanit Eng Division J 1(2):1–2Google Scholar
  30. 30.
    Lente G (2015) Solving rate equations. In: Lente G (ed) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, ChamCrossRefGoogle Scholar
  31. 31.
    Kumar KV, Sivanesan S (2006) Isotherm parameters for basic dyes onto activated carbon: comparison of linear and non-linear method. J Hazard Mater 129(1):147–150CrossRefGoogle Scholar
  32. 32.
    Miraboutalebi SM, Nikouzad SK, Peydayesh M, Allahgholi N, Vafajoo L, McKay G (2017) Methylene blue adsorption via maize silk powder: kinetic, equilibrium, thermodynamic studies and residual error analysis. Process Saf Environ Prot 106:191–202CrossRefGoogle Scholar
  33. 33.
    Boulinguiez B, Le Cloirec P, Wolbert D (2008) Revisiting the determination of langmuir parameters—application to tetrahydrothiophene adsorption onto activated carbon. Langmuir 24(13):6420–6424CrossRefGoogle Scholar
  34. 34.
    Bahrudin NN, Nawi MA, Lelifajri (2019) Kinetics and isotherm modeling of phenol adsorption by immobilizable activated carbon. React Kinet Mech Catal 126(1):61–82CrossRefGoogle Scholar
  35. 35.
    Zhang G, Wang D, Feng P, Shi S, Wang C, Zheng A, Guang L, Tian Z (2017) Synthesis of zeolite beta containing ultra-small CoO particles for ethylbenzene oxidation. Chin J Catal 38(7):1207–1215CrossRefGoogle Scholar
  36. 36.
    Liu G, Yang L-X, Wu S-J, Jia M-J, Zhang W-X (2014) influence of acid-base properties of K-loaded aluminophosphate catalysts on their catalytic behavior in the O-methylation of catechol. Acta Phys Chim Sin 30(6):1163–1168Google Scholar
  37. 37.
    Khalfaoui M, Knani S, Hachicha MA, Lamine AB (2003) New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment. J Colloid Interface Sci 263(2):350–356CrossRefGoogle Scholar
  38. 38.
    Zhao X, Gao X, Zhang X, Hao Z (2017) Solventless synthesis of AEL-type aluminophosphate molecular sieve from mechanochemically pretreated low-templated reactants. Microporous Mesoporous Mater 242:160–165CrossRefGoogle Scholar
  39. 39.
    Wang J, Song J, Yin C, Ji Y, Zou Y, Xiao F-S (2009) Tetramethylguanidine-templated synthesis of aluminophosphate-based microporous crystals with AFI-type structure. Microporous Mesoporous Mater 117(3):561–569CrossRefGoogle Scholar
  40. 40.
    Zhang S, Shao T, Kose HS, Karanfil T (2012) Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons. Environ Toxicol Chem 31(1):79–85CrossRefGoogle Scholar
  41. 41.
    Ren Y, Yan N, Feng J, Ma J, Wen Q, Li N, Dong Q (2012) Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Mater Chem Phys 136(2):538–544CrossRefGoogle Scholar
  42. 42.
    Kannan N, Sundaram MM (2001) Kinetics and mechanism of removal of methylene blue by adsorption on various carbons—a comparative study. Dyes Pigments 51(1):25–40CrossRefGoogle Scholar
  43. 43.
    Bellér G, Bátki G, Lente G, Fábián I (2010) Unexpected adduct formation in the reaction of peroxomonosulfate ion with the tris-(2,2′-bipyridine)iron(II) and tris-(1,10-phenanthroline)iron(II) complexes. J Coord Chem 63(14–16):2586–2597CrossRefGoogle Scholar
  44. 44.
    Lente G (2018) Facts and alternative facts in chemical kinetics: remarks about the kinetic use of activities, termolecular processes, and linearization techniques. Curr Opin Chem Eng 21:76–83CrossRefGoogle Scholar
  45. 45.
    Khan TA, Khan EA, Shahjahan (2015) Removal of basic dyes from aqueous solution by adsorption onto binary iron-manganese oxide coated kaolinite: non-linear isotherm and kinetics modeling. Appl Clay Sci 107:70–77CrossRefGoogle Scholar
  46. 46.
    Kumar KV (2006) Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J Hazard Mater 137(3):1538–1544CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Zhihua Liu
    • 1
    • 2
  • Chen Yang
    • 1
    • 2
  • Qingye Zheng
    • 1
  • Pei He
    • 2
  • Yaming Wang
    • 1
    Email author
  1. 1.Faculty of Chemical EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.Yunnan Key Lab of Tobacco ChemistryYunnan Academy of Tobacco ScienceKunmingChina

Personalised recommendations