Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 127, Issue 2, pp 991–1004 | Cite as

Microwave-irradiated acetylation of glycerol catalyzed by acid activated clays

  • Laís Pastre Dill
  • Débora Merediane Kochepka
  • André Melinski
  • Fernando Wypych
  • Claudiney Soares CordeiroEmail author
Article
  • 29 Downloads

Abstract

In this study, the investigation of the effects related to glycerol and acetic acid esterification over solid acid catalysts under microwave radiation by full factorial design 23 is described. Using clay minerals activated with H3PO4 as catalysts it was possible to produce 26.4 wt% of acetins with molar ratio of 1:3 (glycerol:acetic acid), at 90 °C and using 10 wt% catalysts (in relation to glycerol mass) in 1 h of reaction. On the other hand, under the same conditions and conventional heating, 22.5 wt% of acetins were obtained, without selectivity, while under microwave radiation 67% of produced acetins were monoacetin, which is an important intermediate in organic synthesis. The influence of independent variables at 95% confidence level for reactions under microwave was evaluated and the molar ratio (acetic acid:glycerol) had a negative effect on acetin production. Finally, the catalysts were characterized after its exposure to conventional and microwave heating and no structural modifications were observed, which indicates the possibility of catalysts reuse.

Keywords

Heterogeneous catalysis Acid activated clays Glycerol Acetins Microwave heating 

Notes

Acknowledgements

The authors are grateful to the following Brazilian funding agencies for financial support: CNPq, CAPES and FINEP.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11144_2019_1594_MOESM1_ESM.docx (34.9 mb)
Supplementary material 1 (DOCX 35781 kb)

References

  1. 1.
    Zhang J, He D (2014) J Colloid Interface Sci 419:31–38CrossRefGoogle Scholar
  2. 2.
    Yang F, Hanna MA, Sun R (2012) Biotechnol Biofuels 5:13CrossRefGoogle Scholar
  3. 3.
    Umpierre AP, Machado F (2013) Rev Virtual Quim 5:106–116CrossRefGoogle Scholar
  4. 4.
    Fukumura T, Toda T, Seki Y, Kubo M, Shibasaki-Kitakawa N, Yonemoto T (2009) Ind Eng Chem Res 48:1816–1823CrossRefGoogle Scholar
  5. 5.
    Venkatesha NJ, Bhat YS, Prakash BSJ (2016) RSC Adv 6:45819–45828CrossRefGoogle Scholar
  6. 6.
    Mufrodi Z, Sutijan R, Budiman A (2014) Eng J 18(2):29–40CrossRefGoogle Scholar
  7. 7.
    Kale S, Umbarkar SB, Dongare MK, Eckelt R, Armbruster U, Martin A (2015) Appl Catal A 490:10–16CrossRefGoogle Scholar
  8. 8.
    Gao X, Zhu S, Li Y (2015) Catal Commun 62:48–51CrossRefGoogle Scholar
  9. 9.
    He HP, Guo JG, Xie XD, Lin HF, Li LY (2002) Clay Miner 37:337–344CrossRefGoogle Scholar
  10. 10.
    Zatta L, Ramos LP, Wypych F (2013) Appl Clay Sci 80–81:236–244CrossRefGoogle Scholar
  11. 11.
    Komadel P (2016) Appl Clay Sci 131:84–99CrossRefGoogle Scholar
  12. 12.
    Mizugaki T, Arundhathi R, Mitsudome T, Jitsukawa K, Kaneda K (2014) ACS Sustain Chem Eng 2:574–578CrossRefGoogle Scholar
  13. 13.
    Dill LP, Kochepka DM, Krieger N, Ramos LP (2018) Biocatal Biotransform 1:1–10Google Scholar
  14. 14.
    Lidström P, Tierney J, Wathey B, Westman J (2001) Tetrahedron 57:9225–9283CrossRefGoogle Scholar
  15. 15.
    Sanseverino AM (2002) Quim Nova 25:660–667CrossRefGoogle Scholar
  16. 16.
    Rodrigues AW, Brasileiro MI, Araújo WD, Araújo EM, Neves GA, Melo TJA (2007) Polímeros 17:219–227CrossRefGoogle Scholar
  17. 17.
    Alves JS, Zanini AE, De Souza ME, Nascimento MLF (2016) Cerâmica 62:1–8CrossRefGoogle Scholar
  18. 18.
    American Oil Chemists’ Society (AOCS) (1997) free fatty acids. In: Official method sampling and analysis of commercial fats and oils, 5th edn. AOCS: Urbana, ILGoogle Scholar
  19. 19.
    National Agency for Petroleum, Natural Gas and Biofuels (ANP), Ministry of Mines and Energy (2014) Resolution Number 45; ANP: Brasília, Distrito Federal, Brazil, Aug 25. 2014; http://nxt.anp.gov.br/NXT/gateway.dll/leg/resolucoes_anp/2014/agosto/ranp%2045%20-%202014.xml?fn=document-frameset.htm$f=templates$3.0. Accessed 22 May 2018
  20. 20.
    Kanda LRS, Corazza ML, Zatta L, Wypych F (2017) Fuel 193:265–274CrossRefGoogle Scholar
  21. 21.
    Han Y-S, Matsumoto H, Yamanaka S (1997) Chem Mater 9:2013–2018CrossRefGoogle Scholar
  22. 22.
    Tyagi B, Chudasama CD, Jasra RV (2006) Spectrochim Acta A 64:273–278CrossRefGoogle Scholar
  23. 23.
    Madejová J (2003) Vib Spectrosc 31:1–10CrossRefGoogle Scholar
  24. 24.
    Tabernero V, Camejo C, Terreros P, Alba MD, Cuenca T (2010) Materials 3:1015–1030CrossRefGoogle Scholar
  25. 25.
    Kumar P, Jasra RV, Bhat TSG (1995) Ind Eng Chem Res 34:1440–1448CrossRefGoogle Scholar
  26. 26.
    Komadel P, Madejova J (2006) Developments in clay science. In: Bergaya Faïza, Theng BKG, Lagaly G (eds) Handbook of clay science, 1st edn. Elsevier, AmsterdamGoogle Scholar
  27. 27.
    Varadwaj GBB, Rana S, Parida KM (2013) Dalton T 42:5122–5129CrossRefGoogle Scholar
  28. 28.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  29. 29.
    Harun FW, Almadani EA, Radzi SM (2016) J Sci Res Dev 3:90–96Google Scholar
  30. 30.
    Sigma-Aldrich (2018). https://www.sigmaaldrich.com/brazil.html. Accessed 13 July 2018
  31. 31.
    Timofeeva MN, Panchenko VN, Krupskaya VV, Gil A, Vicente MA (2017) Catal Commun 90:65–69CrossRefGoogle Scholar
  32. 32.
    Dutta D, Borah BJ, Saikia L, Pathak MG, Dutta DK (2011) Appl Clay Sci 53:650–656CrossRefGoogle Scholar
  33. 33.
    Gonçalves VLC, Pinto BP, Silva JC, Mota CJA (2008) Catal Today 133–135:673–677CrossRefGoogle Scholar
  34. 34.
    Watanabe T, Sugiura M, Sato M, Yamada N, Nakanishi K (2005) Process Biochem 40:637–643CrossRefGoogle Scholar
  35. 35.
    Rezayat M, Ghaziaskar HS (2009) Green Chem 11:710–715CrossRefGoogle Scholar
  36. 36.
    Pariente S, Tanchoux N, Fajula F (2008) Green Chem 11:1256–1261CrossRefGoogle Scholar
  37. 37.
    Lidström P, Tierney J, Wathey B, Westman J (2001) Tetrahedron 57:9225–9283CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Laís Pastre Dill
    • 1
  • Débora Merediane Kochepka
    • 1
  • André Melinski
    • 1
  • Fernando Wypych
    • 1
  • Claudiney Soares Cordeiro
    • 1
    Email author
  1. 1.Research Center in Applied Chemistry, CEPESQ - Department of ChemistryFederal University of Paraná, UFPRCuritibaBrazil

Personalised recommendations