Reaction Kinetics, Mechanisms and Catalysis

, Volume 127, Issue 2, pp 757–773 | Cite as

A new strategy for the synthesis of monomethylhydrazine using the Raschig process. 1. Study of the stability of monochloramine

  • D. M. Le
  • A. J. Bougrine
  • V. PasquetEmail author
  • H. Delalu


In this paper, we describe a new strategy developed for the synthesis of MMH using the Raschig process. For the first time, it consists in synthesizing chloramine under stoichiometric conditions which leads to a more economical process because it avoids the additional steps of extraction due to the presence of excess reagents. However, monochloramine is not very stable and, therefore, it is necessary to study its stability. The various batch tests show that the reaction must be strictly controlled. As shown from DSC analyses on stoichiometric chloramine solutions, a risk of decomposition is present from 36 °C. Thus, controlling the temperature rise requires efficient cooling in the synthesis reactor or synthesis at low temperature, in order to avoid any sudden decomposition of the synthesis solution.


Raschig process Monomethylhydrazine Stability Monochloramine 



  1. 1.
    Hojo S, Hasegawa Y, Hirai T (1989) Process for preparation of monomethylhydrazine. US Patent 4855501Google Scholar
  2. 2.
    Graefe AF (1960) Preparation of lower monoalkylhydrazines. US Patent 2962532Google Scholar
  3. 3.
    Schmidt EW (2001) In: hydrazine and its derivatives, 2nd edn. Wiley, New York p, p 2121Google Scholar
  4. 4.
    Lum DW, Mador IL (1959) Preparation of N-substituted hydrazine derivatives. US Patent 2917545Google Scholar
  5. 5.
    Delalu H, Marchand A, Ferriol M, Cohen-Adad R (1981) Cinétique de la réaction de formation de la diméthylhydrazine asymétrique par action de la monochloramine sur la dimethylamine. J Chim Phys 78(3):247–252CrossRefGoogle Scholar
  6. 6.
    Darwich C, Elkhatib M, Pasquet V, Delalu H (2014) Kinetic modeling of the synthesis of N-aminopiperidine via the Raschig process: reaction optimization and continuous process. Chem Eng J 240:307–318CrossRefGoogle Scholar
  7. 7.
    Ferriol M, Laachach A, Cohenanad MT, Getzen FW, Jorat L, Noyel G, Huck J, Bureau JC (1992) Vapor-liquid equilibria in the binary systems water-methylhydrazine and water-1,1-dimethylhydrazine. Thermodynamic modeling in relation to the structure of the liquid-phase. Fluid Phase Equilibria 71(3):287–299CrossRefGoogle Scholar
  8. 8.
    Delalu H, Duriche C, Berthet J, Le Gaes P (2004) Process for the synthesis of monochloramine. European Patent 1415953Google Scholar
  9. 9.
    Darwich C, Elkhatib M, Steinhauser G, Delalu H (2009) Kinetics of the oxydation of N-aminopiperidine with chloramine. Kinet Catal 50(1):103–110CrossRefGoogle Scholar
  10. 10.
    Rizk-Ouaini R (1986) Oxidation reaction of ammonia with sodium hypochlorite. Production and degradation reactions of chloramines. Bull Soc Chim Fr 4:512–521Google Scholar
  11. 11.
    Anbar M, Yagil G (1962) Hydrolysis of chloramine in alkaline solution. J Am Chem Soc 84(10):1790–1796CrossRefGoogle Scholar
  12. 12.
    Ferriol M, Gazet J, Rizk-Ouaini R (1986) Kinetics of the reaction between hydroxylamine and monochloramine in a basic medium. Bull Soc Chim Fr 4:504Google Scholar
  13. 13.
    Darwich C, Elkhatib M, Pasquet V, Delalu H (2013) Kinetic and Mechanistic study of N-aminopiperidine formation via the Raschig process. Kinet Catal 54(6):649–655CrossRefGoogle Scholar
  14. 14.
    Goutelle V, Pasquet V, El Hajj A, Bougrine AJ, Delalu H (2011) Synthesis of hydroxyethylhydrazine by the Raschig process and comparison with synthesis by the alkylation process. Int J Chem Kinet 43:331–344CrossRefGoogle Scholar
  15. 15.
    Soulard M, Bloc F, Hatterer A (1981) Diagrams of existence of chloramines in aqueous-solution. J Chem Soc Dalton Trans 12:2300–2310CrossRefGoogle Scholar
  16. 16.
    Lide DR (2010) Handbook of chemistry and physics. CRC Press/Taylor and Francis, Raton, p 2804Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • D. M. Le
    • 1
  • A. J. Bougrine
    • 1
  • V. Pasquet
    • 1
    Email author
  • H. Delalu
    • 1
  1. 1.Laboratoire Hydrazines et Composés Energétiques Polyazotés – UMR 5278, UCBL/CNRS/CNES/ArianeGroupUniversité Claude Bernard Lyon 1Villeurbanne CedexFrance

Personalised recommendations