Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 127, Issue 2, pp 945–959 | Cite as

Purification of exhaust gases from gasoline engine using adsorption-catalytic systems. Part 1: trapping of hydrocarbons by Ag-modified ZSM-5

  • V. L. Temerev
  • A. A. VedyaginEmail author
  • K. N. Iost
  • L. V. Pirutko
  • S. V. Cherepanova
  • R. M. Kenzhin
  • V. O. Stoyanovskii
  • M. V. Trenikhin
  • D. A. Shlyapin
Article
  • 30 Downloads

Abstract

In the present work, adsorptive-catalytic properties and thermal stability of the systems based on ZSM-5 zeolite and γ-Al2O3, used as a binder, were studied. The zeolite was modified with silver, and the Ag loading used was 5 and 10 wt%. Characterization of the samples by a transmission electron microscopy has revealed that for the 5%Ag/ZSM-5 sample the predominant part of silver is represented by ion-exchanged forms. The 10%Ag/ZSM-5 sample contains also silver nanoparticles and clusters on the outer zeolite surface. As it was found by means of X-ray diffraction analysis, all these surface Ag species are roentgen-amorphous. Diffuse reflectance UV–vis spectroscopy confirms presence of the surface Ag clusters, which concentration increases after the high-temperature aging. The adsorption capacity of the samples was estimated using toluene as a model aromatic compound. The composition of the reaction mixture during the aging procedures was varied in order to elucidate the contribution of different silver sites to hydrocarbons sorption, their partial oxidation and oxidation of carbon monoxide.

Keywords

Vehicle emissions Cold-start Hydrocarbon trapping Ag-ZSM-5 CO oxidation Prompt thermal aging procedure 

Notes

Funding

This study was supported by the Ministry of Science and High Education of Russian Federation (Project AAAA-A17-117041710086-6). The analysis of experimental results was partly carried out within the Governmental Program “Science” of Tomsk Polytechnic University (Project No. 4.5200.2017).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Heck RM, Farrauto RJ (2001) Automobile exhaust catalysts. Appl Catal A Gen 221:443–457CrossRefGoogle Scholar
  2. 2.
    Heck RM, Farrauto RJ, Gulati ST (2012) Catalytic air pollution control. Wiley, New YorkGoogle Scholar
  3. 3.
    López JM, Navarro MV, García T, Murillo R, Mastral AM, Varela-Gandía FJ, Lozano-Castelló D, Bueno-López A, Cazorla-Amorós D (2010) Screening of different zeolites and silicoaluminophosphates for the retention of propene under cold start conditions. Microporous Mesoporous Mater 130:239–247CrossRefGoogle Scholar
  4. 4.
    Endo Y, Nishikawa J, Iwakura H, Inamura M, Wakabayashi T, Nakahara Y, Ogasawara M, Kato S (2018) Development of highly durable zeolites as hydrocarbon trap materials for automotive catalysts. SAE Tech Pap 2018-01-0947.  https://doi.org/10.4271/2018-01-0947
  5. 5.
    Liu X, Lampert JK, Arendarskiia DA, Farrauto RJ (2001) FT-IR spectroscopic studies of hydrocarbon trapping in Ag+-ZSM-5 for gasoline engines under cold-start conditions. Appl Catal B Environ 35:125–136CrossRefGoogle Scholar
  6. 6.
    Yoshimoto R, Hara K, Okumura K, Katada N, Niwa M (2007) Analysis of toluene adsorption on Na-form zeolite with a temperature-programmed desorption method. J Phys Chem C 111:1474–1479CrossRefGoogle Scholar
  7. 7.
    Azambre B, Westermann A, Finqueneisel G, Can F, Comparot JD (2015) Adsorption and desorption of a model hydrocarbon mixture over HY zeolite under dry and wet conditions. J Phys Chem C 119:315–331CrossRefGoogle Scholar
  8. 8.
    Corbo P, Migliardini F, Aiello R, Crea F, Caputo D, Colella C, Lucolano F (2001) Abatement of automotive cold start hydrocarbon emissions. SAE Tech Pap 2001-24-0066.  https://doi.org/10.4271/2001-24-0066
  9. 9.
    Kustov L, Golubeva V, Korableva A, Anischenko O, Yegorushina N, Kapustin G (2018) Alkaline-modified ZSM-5 zeolite to control hydrocarbon cold-start emission. Microporous Mesoporous Mater 260:54–58CrossRefGoogle Scholar
  10. 10.
    Mudrakovskii IL, Mastikhin VM, Bogdanchikova NE, Khasin AV (1987) Nature of ethylene complexes on the surface of Ag/SiO2 as evidenced by 13C NMR data. React Kinet Catal Lett 34:185–190CrossRefGoogle Scholar
  11. 11.
    Zalucka J, Kozyra P, Mitoraj M, Broclawik E, Datka J (2008) Cu+, Ag+ and Na+ cationic sites in ZSM-5 interacting with benzene: DFT modeling. Stud Surf Sci Catal 174:709–712CrossRefGoogle Scholar
  12. 12.
    Kozyra P, Broclawik E, Mitoraj MP (2013) Datka J (2013) C=C, C≡C, and C=O bond activation by coinage metal cations in ZSM-5 zeolites: quantitative charge transfer resolution. J Phys Chem C 117:7511–7518CrossRefGoogle Scholar
  13. 13.
    Temerev VL, Vedyagin AA, Afonasenko TN, Iost KN, Kotolevich YS, Baltakhinov VP, Tsyrulnikov PG (2016) Effect of Ag loading on the adsorption/desorption properties of ZSM-5 towards toluene. React Kinet Mech Catal 119:629–640CrossRefGoogle Scholar
  14. 14.
    Kang SB, Kalamaras C, Balakotaiah V, Epling W (2017) Hydrocarbon trapping over Ag-beta zeolite for cold-start emission control. Catal Lett 147:1355–1362CrossRefGoogle Scholar
  15. 15.
    Yang H, Ma C, Li Y, Wang J, Zhang X, Wang G, Qiao N, Sun Y, Cheng J, Hao Z (2018) Synthesis, characterization and evaluations of the Ag/ZSM-5 for ethylene oxidation at room temperature: investigating the effect of water and deactivation. Chem Eng J 347:808–818CrossRefGoogle Scholar
  16. 16.
    Kim H, Jang E, Jeong Y, Kim J, Kang CY, Kim CH, Baik H, Lee K-Y, Choi J (2018) On the synthesis of a hierarchically-structured ZSM-5 zeolite and the effect of its physicochemical properties with Cu impregnation on cold-start hydrocarbon trap performance. Catal Today 314:78–93CrossRefGoogle Scholar
  17. 17.
    Wu Y, Li C, Bai J (2018) Preparation of silver supported porous 4A-zeolite through hard template agent combined with heat treatment and study on its catalytic performance. J Porous Mater 25:1669–1677CrossRefGoogle Scholar
  18. 18.
    Zhang X, Dong H, Wang Y, Liu N, Zuo Y, Cui L (2016) Study of catalytic activity at the Ag/Al-SBA-15 catalysts for CO oxidation and selective CO oxidation. Chem Eng J 283:1097–1107CrossRefGoogle Scholar
  19. 19.
    Lee J, Theis JR, Kyriakidou EA (2019) Vehicle emissions trapping materials: successes, challenges, and the path forward. Appl Catal B Environ 243:397–414CrossRefGoogle Scholar
  20. 20.
    Sadeghi M, Yekta S, Mirzaei D (2018) A novel CuO NPs/AgZSM-5 zeolite composite adsorbent: synthesis, identification and its application for the removal of sulfur mustard agent simulant. J Alloys Compd 748:995–1005CrossRefGoogle Scholar
  21. 21.
    Temerev V, Vedyagin A, Iost K, Afonasenko T, Tsyrulnikov P (2018) Enhanced adsorption properties of Ag-loaded β-zeolite towards toluene. Mater Sci Forum 917:180–184CrossRefGoogle Scholar
  22. 22.
    Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Plyusnin PE, Shubin YV, Mishakov IV (2017) Effect of alumina phase transformation on stability of low-loaded Pd–Rh catalysts for CO oxidation. Top Catal 60:152–161CrossRefGoogle Scholar
  23. 23.
    Vedyagin AA, Volodin AM, Kenzhin RM, Stoyanovskii VO, Shubin YV, Plyusnin PE, Mishakov IV (2017) Effect of metal-metal and metal-support interaction on activity and stability of Pd–Rh/alumina in CO oxidation. Catal Today 293–294:73–81CrossRefGoogle Scholar
  24. 24.
    Plyusnin PE, Slavinskaya EM, Kenzhin RM, Kirilovich AK, Makotchenko EV, Stonkus OA, Shubin YV, Vedyagin AA (2019) Synthesis of bimetallic AuPt/CeO2 catalysts and their comparative study in CO oxidation under different reaction conditions. Reac Kinet Mech Catal.  https://doi.org/10.1007/s11144-019-01545-5 Google Scholar
  25. 25.
    Ivanov DP, Pirutko LV, Panov GI (2014) Effect of steaming on the catalytic performance of ZSM-5 zeolite in the selective oxidation of phenol by nitrous oxide. J Catal 311:424–432CrossRefGoogle Scholar
  26. 26.
    Vedyagin AA, Mishakov IV, Karnaukhov TM, Krivoshapkina EF, Ilyina EV, Maksimova TA, Cherepanova SV, Krivoshapkin PV (2017) Sol-gel synthesis and characterization of two-component systems based on MgO. J Sol-Gel Sci Technol 82:611–619CrossRefGoogle Scholar
  27. 27.
    Stoyanovskii VO, Vedyagin AA, Volodin AM, Kenzhin RM, Slavinskaya EM, Plyusnin PE, Shubin YV (2018) Optical spectroscopy methods in the estimation of the thermal stability of bimetallic Pd–Rh/Al2O3 three-way catalysts. Top Catal 62:296–304CrossRefGoogle Scholar
  28. 28.
    Bolshov VA, Volodin AM, Zhidomirov GM, Shubin AA, Bedilo AF (1994) Radical intermediates in the photoinduced formation of benzene cation-radicals over H-ZSM-5 zeolites. J Phys Chem 98:7551–7554CrossRefGoogle Scholar
  29. 29.
    Li Z, Divakara SG, Richards RM (2010) Oxidation catalysis by nanoscale gold, silver, and copper. In: Adv Nanomat. Wiley, New YorkGoogle Scholar
  30. 30.
    Dutov VV, Mamontov GV, Zaikovskii VI, Liotta LF, Vodyankina OV (2018) Low-temperature CO oxidation over Ag/SiO2 catalysts: effect of OH/Ag ratio. Appl Catal B Environ 221:598–609CrossRefGoogle Scholar
  31. 31.
    De Cremer G, Coutiño-Gonzalez E, Roeffaers MBJ, Moens B, Ollevier J, Van der Auweraer M, Schoonheydt R, Jacobs PA, De Schryver FC, Hofkens J, De Vos DE, Sels BF, Vosch T (2009) Characterization of fluorescence in heat-treated silver-exchanged zeolites. J Am Chem Soc 131:3049–3056CrossRefGoogle Scholar
  32. 32.
    De Cremer G, Coutino-Gonzalez E, Roeffaers MBJ, De Vos DE, Hofkens J, Vosch T, Sels BF (2010) In situ observation of the emission characteristics of zeolite-hosted silver species during heat treatment. Chem Phys Chem 11:1627–1631CrossRefGoogle Scholar
  33. 33.
    Jacobs PA, Uytterhoeven JB, Beyer HK (1977) Cleavage of water over zeolites. J Chem Soc Chem Commun 4:128–129CrossRefGoogle Scholar
  34. 34.
    Qu Z, Cheng M, Huang W, Bao X (2005) Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts. J Catal 229:446–458CrossRefGoogle Scholar
  35. 35.
    Qu Z, Huang W, Cheng M, Bao X (2005) Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation. J Phys Chem B 109:15842–15848CrossRefGoogle Scholar
  36. 36.
    Furusawa T, Seshan K, Lercher JA, Lefferts L, Aika K (2002) Selective reduction of NO to N2 in the presence of oxygen over supported silver catalysts. Appl Catal B Environ 37:205–216CrossRefGoogle Scholar
  37. 37.
    Guerba H, Djellouli B, Petit C, Pitchon V (2014) CO oxidation catalyzed by Ag/SBA-15 catalysts: influence of the hydrothermal treatment. C R Chim 17:775–784CrossRefGoogle Scholar
  38. 38.
    Nagy A, Mestl G, Rühle T, Weinberg G, Schlögl R (1998) The dynamic restructuring of electrolytic silver during the formaldehyde synthesis reaction. J Catal 179:548–559CrossRefGoogle Scholar
  39. 39.
    Kolobova E, Pestryakov A, Shemeryankina A, Kotolevich Y, Martynyuk O, Tiznado Vazquez HJ, Bogdanchikova N (2014) Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation. Fuel 138:65–71CrossRefGoogle Scholar
  40. 40.
    Aspromonte SG, Mizrahi MD, Schneeberger FA, López JMR, Boix AV (2013) Study of the nature and location of silver in Ag-exchanged mordenite catalysts. Characterization by spectroscopic techniques. J Phys Chem C 117:25433–25442CrossRefGoogle Scholar
  41. 41.
    Coutiño-Gonzalez E, Baekelant W, Steele JA, Kim CW, Roeffaers MBJ, Hofkens J (2017) Silver clusters in zeolites: from self-assembly to ground-breaking luminescent properties. Acc Chem Res 50:2353–2361CrossRefGoogle Scholar
  42. 42.
    Mayoral A, Carey T, Anderson PA, Lubk A, Diaz I (2011) Atomic resolution analysis of silver ion-exchanged zeolite A. Angew Chemie Int Ed 50:11230–11233CrossRefGoogle Scholar
  43. 43.
    Lim DC, Lopez-Salido I, Kim YD (2005) Size selectivity for CO-oxidation of Ag nanoparticles on highly ordered pyrolytic graphite (HOPG). Surf Sci 598:96–103CrossRefGoogle Scholar
  44. 44.
    Shimizu K, Sawabe K, Satsuma A (2011) Unique catalytic features of Ag nanoclusters for selective NOx reduction and green chemical reactions. Catal Sci Technol 1:331–341CrossRefGoogle Scholar
  45. 45.
    Vedyagin AA, Stoyanovskii VO, Kenzhin RM, Slavinskaya EM, Plyusnin PE, Shubin YV (2019) Purification of gasoline exhaust gases using bimetallic Pd–Rh/δ-Al2O3 catalysts. Reac Kinet Mech Catal.  https://doi.org/10.1007/s11144-019-01573-1 Google Scholar
  46. 46.
    Lin B, Zhang Q, Wang Y (2009) Catalytic conversion of ethylene to propylene and butenes over H− ZSM-5. Ind Eng Chem Res 48:10788–10795CrossRefGoogle Scholar
  47. 47.
    Ulrich V, Moroz B, Sinev I, Pyriaev P, Bukhtiyarov V, Grünert W (2017) Studies on three-way catalysis with supported gold catalysts. Influence of support and water content in feed. Appl Catal B Environ 203:572–581CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • V. L. Temerev
    • 1
  • A. A. Vedyagin
    • 2
    • 3
    Email author
  • K. N. Iost
    • 1
  • L. V. Pirutko
    • 2
  • S. V. Cherepanova
    • 2
    • 4
  • R. M. Kenzhin
    • 2
  • V. O. Stoyanovskii
    • 2
  • M. V. Trenikhin
    • 1
  • D. A. Shlyapin
    • 1
  1. 1.Center of New Chemical TechnologiesBoreskov Institute of Catalysis SB RASOmskRussian Federation
  2. 2.Boreskov Institute of Catalysis SB RASNovosibirskRussian Federation
  3. 3.National Research Tomsk Polytechnic UniversityTomskRussian Federation
  4. 4.National Research University-Novosibirsk State UniversityNovosibirskRussian Federation

Personalised recommendations