Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 127, Issue 2, pp 1073–1085 | Cite as

Immobilization of the Fe2O3/TiO2 photocatalyst on carbon fiber cloth for the degradation of a textile dye under visible light irradiation

  • Mohsen Behpour
  • Pirooz Shirazi
  • Mehdi RahbarEmail author
Article
  • 32 Downloads

Abstract

This work focuses on the photocatalytic activity of immobilized Fe2O3/TiO2 on carbon fiber cloth as a chemically stable and flexible supporting material toward degradation of textile dye [Basic Blue 41 (BB 41)] under visible light. The photocatalysts were characterized by SEM, XRD, diffuse reflectance UV–Vis, photoluminescence spectroscopy, and FTIR. The photocatalytic activities of immobilized Fe2O3/TiO2 samples with different contents of Fe2O3 (5–25 wt%) were studied for degradation of BB 41 solution (100 ml, 10 ppm) under visible light irradiation for 240 min. The optimum amount of Fe2O3 was found to be 20 wt% from experimental results that indicated 97.54% photoactivity. In order to further investigate the photocatalytic degradation, chemical oxygen demand experiments were carried out that showed the degradation of dye solution was about 84% utilizing the optimum photocatalyst. The reusability of the optimum photocatalyst was studied in 7 reaction cycles (28 h) which revealed only 13% loss of photoactivity.

Keywords

Immobilization Photocatalyst Fe2O3 TiO2 Carbon fiber cloth Textile dye 

Notes

Acknowledgements

The authors are grateful to University of Kashan for supporting this work with Grant No. 2564508.

References

  1. 1.
    Borker P, Salker AV (2006) MSEB 133:55–60CrossRefGoogle Scholar
  2. 2.
    Akpan UG, Hameed BH (2009) J Hazard Mater 170:520–529CrossRefGoogle Scholar
  3. 3.
    Teixeira S, Martins PM, Lanceros-Méndez S, Kühn K, Cuniberti G (2016) Surf Sci 384:497–504CrossRefGoogle Scholar
  4. 4.
    Zhang J, Wu Y, Xing M, Leghari SAK, Sajjad S (2010) Energy Environ Sci 3:715–726CrossRefGoogle Scholar
  5. 5.
    Pereira JHOS, Vilar VJP, Borges MT, González O, Esplugas S, Boaventura RAR (2011) Sol Energy 85:2732–2740CrossRefGoogle Scholar
  6. 6.
    Kümmerer K (2009) J Environ Manage 90:2354–2366CrossRefGoogle Scholar
  7. 7.
    Savage N, Diallo MS (2005) JNR 7:331–342Google Scholar
  8. 8.
    Reyes C, Fernández J, Freer J, Mondaca MA, Zaror C, Malato S, Mansilla HD (2006) JPPA 184:141–146Google Scholar
  9. 9.
    Saha S, Wang JM, Pal A (2012) Sep Purif Technol 89:147–159CrossRefGoogle Scholar
  10. 10.
    Daghrir R, Drogui P, Robert D (2013) ACSP 52:3581–3599Google Scholar
  11. 11.
    Gupta SM, Tripathi M (2011) Chin Sci Bull 56:1639CrossRefGoogle Scholar
  12. 12.
    LiPuma G, Bono A, Krishnaiah D, Collin JG (2008) J Hazard Mater 157:209–219CrossRefGoogle Scholar
  13. 13.
    Thomas M, Naikoo GA, Sheikh MUD, Bano M, Khan F (2016) JPPA 327:33–43Google Scholar
  14. 14.
    Zayadi RA, Bakar FA (2017) JPPA 346:338–350Google Scholar
  15. 15.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) Appl Catal B 125:331–349CrossRefGoogle Scholar
  16. 16.
    Robert D (2007) Catal Today 122:20–26CrossRefGoogle Scholar
  17. 17.
    Iliev V, Tomova D, Bilyarska L (2018) JPPA 351:69–77Google Scholar
  18. 18.
    Mishra M, Chun DM (2015) Appl Catal A 498:126–141CrossRefGoogle Scholar
  19. 19.
    Ambrus Z, Balázs N, Alapi T, Wittmann G, Sipos P, Dombi A, Mogyorósi K (2008) Appl Catal B 81:27–37CrossRefGoogle Scholar
  20. 20.
    Ahmed MA, El-Katori EE, Gharni ZH (2013) J Alloys Compd 553:19–29CrossRefGoogle Scholar
  21. 21.
    Kim DH, Hong HS, Kim SJ, Song JS, Lee KS (2004) J Alloys Compd 375:259–264CrossRefGoogle Scholar
  22. 22.
    Sun S, Ding J, Bao J, Gao C, Qi Z, Yang X, He B, Li C (2012) Appl Surf Sci 258:5031–5037CrossRefGoogle Scholar
  23. 23.
    Ohko Y, Ando I, Niwa C, Tatsuma T, Yamamura T, Nakashima T, Kubota Y, Fujishima A (2001) Environ Sci Technol 35:2365–2368CrossRefGoogle Scholar
  24. 24.
    Scotti R, D’Arienzo M, Morazzoni F, Bellobono IR (2009) Appl Catal B 88:323–330CrossRefGoogle Scholar
  25. 25.
    Freeman JJ, Gimblett FGR, Roberts RA, Sing KSW (1988) Carbon 26:7–11CrossRefGoogle Scholar
  26. 26.
    Fu P, Luan Y, Dai X (2004) J Mol Catal A Chem 221:81–88CrossRefGoogle Scholar
  27. 27.
    Shi JW, Cui HJ, Chen JW, Fu ML, Xu B, Luo HY, Ye ZL (2012) J Colloid Interface Sci 388:201–208CrossRefGoogle Scholar
  28. 28.
    Wang F, Qin XF, Meng YF, Guo ZL, Yang LX, Ming YF (2013) Mater Sci Semicond Process 16:802–806CrossRefGoogle Scholar
  29. 29.
    Khalilian H, Behpour M, Atouf V, Hosseini SN (2015) Sol Energy 112:239–245CrossRefGoogle Scholar
  30. 30.
    Nag S, Roychowdhury A, Das D, Mukherjee S (2016) Mater Res Bull 74:109–116CrossRefGoogle Scholar
  31. 31.
    Lassoued A, Dkhil B, Gadri A, Ammar S (2017) Results Phys 7:3007–3015CrossRefGoogle Scholar
  32. 32.
    Viana MM, Soares VF, Mohallem NDS (2010) Ceram Int 36:2047–2053CrossRefGoogle Scholar
  33. 33.
    Abbas N, Shao GN, Haider MS, Imran SM, Park SS, Kim HT (2016) JIEC 39:112–120Google Scholar
  34. 34.
    Kumar PM, Badrinarayanan S, Sastry M (2000) Thin Solid Films 358:122–130CrossRefGoogle Scholar
  35. 35.
    Nollet LM, De Gelder LS (2000) Handbook of water analysis. CRC Press, Boca RatonGoogle Scholar
  36. 36.
    Razak S, Nawi MA, Haitham K (2014) Appl Surf Sci 319:90–98CrossRefGoogle Scholar
  37. 37.
    Li XZ, Li FB, Yang CL, Ge WK (2001) JPPA 141:209–217Google Scholar
  38. 38.
    Okumura T, Kinoshita Y, Uchiyama H, Imai H (2008) Mater Chem Phys 111:486–490CrossRefGoogle Scholar
  39. 39.
    Zhou M, Yu J, Cheng B (2006) J Hazard Mater 137:1838–1847CrossRefGoogle Scholar
  40. 40.
    Hung WC, Fu SH, Tseng JJ, Chu H, Ko TH (2007) Chemosphere 66:2142–2151CrossRefGoogle Scholar
  41. 41.
    Kuang S, Yang L, Luo S, Cai Q (2009) Appl Surf Sci 255:7385–7388CrossRefGoogle Scholar
  42. 42.
    Beydoun D, Amal R, Low GKC, McEvoy S (2000) J Phys Chem B 104:4387–4396CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Institute of Nanoscience and NanotechnologyUniversity of KashanKashanIran
  2. 2.Department of Analytical Chemistry, Faculty of ChemistryUniversity of KashanKashanIran

Personalised recommendations