Synthesis of bimetallic AuPt/CeO2 catalysts and their comparative study in CO oxidation under different reaction conditions

  • Pavel E. Plyusnin
  • Elena M. Slavinskaya
  • Roman M. Kenzhin
  • Anastasiya K. Kirilovich
  • Evgeniya V. Makotchenko
  • Olga A. Stonkus
  • Yury V. Shubin
  • Aleksey A. VedyaginEmail author


In the present work, ceria-supported Au–Pt catalyst with metal ratio 3:2 was prepared using a “single-source precursor” concept. The double complex salt [AuEn2]2[Pt(NO2)4]3·6H2O was used as such precursor. CeO2 of unique morphology with developed surface area (120 m2/g) obtained by urea precipitation technique was used as a support. According to XRD data, size of the alloyed Au–Pt particles was estimated to be less than 3 nm. It was shown that bimetallic Au–Pt system intensifies release of oxygen from the CeO2 lattice. The 0.5%Au2Pt3/CeO2 catalyst was comparatively studied in low temperature CO oxidation (simplified model reaction mixture) and under prompt thermal aging conditions (complex reaction mixture) with regard to monometallic reference samples 0.2%Au/CeO2 and 0.3%Pt/CeO2. The catalytic performance of the samples was found to be significantly dependent on the reaction and pre-treatment conditions. In the case of the bimetallic catalyst, reversible redistribution and enrichment of the nanoparticle surface with Pt or Au were shown to be the key factor defining the activity.


Bimetallic AuPt alloys Preparation Double complex salt CO oxidation Thermal stability 



This study was funded by the Russian Science Foundation (Grant Number 16-13-10192).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11144_2019_1545_MOESM1_ESM.pdf (293 kb)
Supplementary material 1 (PDF 293 kb)


  1. 1.
    Rico Pérez V, Ángeles Velasco Beltrán M, He Q, Wang Q, Martínez Salinas, de Lecea C, Bueno López A (2013) Preparation of ceria-supported rhodium oxide sub-nanoparticles with improved catalytic activity for CO oxidation. Catal Commun 33:47–50CrossRefGoogle Scholar
  2. 2.
    Satsuma A, Osaki K, Yanagihara M, Ohyama J, Shimizu K (2013) Activity controlling factors for low-temperature oxidation of CO over supported Pd catalysts. Appl Catal B 132–133:511–518CrossRefGoogle Scholar
  3. 3.
    Song W, Su Y, Hensen EJM (2015) A DFT study of CO oxidation at the Pd-CeO2(110) interface. J Phys Chem C 119:27505–27511CrossRefGoogle Scholar
  4. 4.
    Gerceker D, Onal I (2013) A DFT study on CO oxidation on Pd4 and Rh4 clusters and adsorbed Pd and Rh atoms on CeO2 and Ce0.75Zr0.25O2 supports for TWC applications. Appl Surf Sci 285:927–936CrossRefGoogle Scholar
  5. 5.
    Wang C, Zheng T, Lu J, Wu X, Hochstadt H, Zhao Y (2017) Three-way catalytic reactions on Rh-based catalyst: effect of Rh/ceria interfaces. Appl Catal A 544:30–39CrossRefGoogle Scholar
  6. 6.
    Min P, Zhang S, Xu Y, Li R (2018) Enhanced oxygen storage capacity of CeO2 with doping-induced unstable crystal structure. Appl Surf Sci 448:435–443CrossRefGoogle Scholar
  7. 7.
    Wang Q, Cui M, Hou Y, Zhong Q, Yue M, Huang X (2017) The effect of precipitation pH on thermal stability and structure of Ce0.35Zr0.55(LaPr)0.1O2 oxides prepared by co-precipitation method. J Alloys Compd 712:431–436CrossRefGoogle Scholar
  8. 8.
    Sahoo TR, Armandi M, Arletti R, Piumetti M, Bensaid S, Manzoli M, Panda SR, Bonelli B (2017) Pure and Fe-doped CeO2 nanoparticles obtained by microwave assisted combustion synthesis: physico-chemical properties ruling their catalytic activity towards CO oxidation and soot combustion. Appl Catal B 211:31–45CrossRefGoogle Scholar
  9. 9.
    Guo J, Shi Z, Wu D, Yin H, Gong M, Chen Y (2015) Effects of Nd on the properties of CeO2-ZrO2 and catalytic activities of three-way catalysts with low Pt and Rh. J Alloys Compd 621:104–115CrossRefGoogle Scholar
  10. 10.
    Alikin EA, Vedyagin AA (2016) High temperature interaction of rhodium with oxygen storage component in three-way catalysts. Top Catal 59:1033–1038CrossRefGoogle Scholar
  11. 11.
    Slavinskaya EM, Gulyaev RV, Zadesenets AV, Stonkus OA, Zaikovskii VI, Shubin YV, Korenev SV, Boronin AI (2015) Low-temperature CO oxidation by Pd/CeO2 catalysts synthesized using the coprecipitation method. Appl Catal B 166–167:91–103CrossRefGoogle Scholar
  12. 12.
    Nie L, Mei D, Xiong H, Peng B, Ren Z, Hernandez XIP, DeLaRiva A, Wang M, Engelhard MH, Kovarik L, Datye AK, Wang Y (2017) Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358:1419–1423CrossRefGoogle Scholar
  13. 13.
    Zhang S, Li X-S, Chen B, Zhu X, Shi C, Zhu A-M (2014) CO Oxidation activity at room temperature over Au/CeO2 catalysts: disclosure of induction period and humidity effect. ACS Catal 4:3481–3489CrossRefGoogle Scholar
  14. 14.
    Vedyagin AA, Volodin AM, Stoyanovskii VO, Mishakov IV, Medvedev DA, Noskov AS (2011) Characterization of active sites of Pd/Al2O3 model catalysts with low Pd content by luminescence, EPR and ethane hydrogenolysis. Appl Catal B 103:397–403CrossRefGoogle Scholar
  15. 15.
    Vedyagin AA, Volodin AM, Kenzhin RM, Stoyanovskii VO, Rogov VA, Kriventsov VV, Mishakov IV (2018) The role of chemisorbed water in formation and stabilization of active sites on Pd/Alumina oxidation catalysts. Catal Today 307:102–110CrossRefGoogle Scholar
  16. 16.
    Stoyanovskii VO, Vedyagin AA, Aleshina GI, Volodin AM, Noskov AS (2009) Characterization of Rh/Al2O3 catalysts after calcination at high temperatures under oxidizing conditions by luminescence spectroscopy and catalytic hydrogenolysis. Appl Catal B 90:141–146CrossRefGoogle Scholar
  17. 17.
    Stoyanovskii VO, Vedyagin AA, Volodin AM, Kenzhin RM, Shubin YV, Plyusnin PE, Mishakov IV (2017) Peculiarity of Rh bulk diffusion in La-doped alumina and its impact on CO oxidation over Rh/Al2O3. Catal Commun 97:18–22CrossRefGoogle Scholar
  18. 18.
    Ozawa M, Okouchi T, Haneda M (2015) Three way catalytic activity of thermally degenerated Pt/Al2O3 and Pt/CeO2-ZrO2 modified Al2O3 model catalysts. Catal Today 242:329–337CrossRefGoogle Scholar
  19. 19.
    Ulrich V, Moroz B, Sinev I, Pyriaev P, Bukhtiyarov V, Gruenert W (2017) Studies on three-way catalysis with supported gold catalysts. Influence of support and water content in feed. Appl Catal B 203:572–581CrossRefGoogle Scholar
  20. 20.
    Tang H, Liu F, Wei J, Qiao B, Zhao K, Su Y, Jin C, Li L, Liu J, Wang J, Zhang T (2016) Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal-support interaction for carbon monoxide oxidation. Angew Chem Int Ed 55:10606–10611CrossRefGoogle Scholar
  21. 21.
    Cheng T, Wang J, Wang S, Cui Y, Zhang H, Yan S, Yuan S, Chen Y (2017) Citric acid induced promoted dispersion of Pt on the support and enhanced catalytic activities for a Pt-based catalyst. Appl Surf Sci 426:745–754CrossRefGoogle Scholar
  22. 22.
    Roller JM, Kim S, Kwak T, Yu H, Maric R (2017) A study on the effect of selected process parameters in a jet diffusion flame for Pt nanoparticle formation. J Mater Sci 52:9391–9409CrossRefGoogle Scholar
  23. 23.
    Dudak M, Novak V, Koci P, Marek M, Blanco-Garcia P, Thompsett D (2016) Impact of zeolite and γ-alumina intra-particle diffusion on the performance of a dual layer catalyst. Eng J (Amsterdam, Netherlands) 301:178–187Google Scholar
  24. 24.
    Kim SH, Han S, Ha H, Byun JY, Kim M-H (2016) Support-shape dependent catalytic activity in Pt/alumina systems using ultra-small (USANS) and small angle neutron scattering (SANS). Catal Today 260:46–54CrossRefGoogle Scholar
  25. 25.
    Zhan Z, Liu X, Dongzhu Ma, Song L, Li J, He H, Dai H (2014) Novel synthetic approaches and TWC catalytic performance of flower-like Pt/CeO2. Front Environ Sci Eng 8:483–495CrossRefGoogle Scholar
  26. 26.
    Hinokuma S, Okamoto M, Ando E, Ikeue K, Machida M (2012) Structure and CO oxidation activity of Pt/CeO2 catalysts prepared using arc-plasma. Bull Chem Soc Jpn 85:144–149CrossRefGoogle Scholar
  27. 27.
    Liu Y, Harold MP, Luss D (2011) Spatio-temporal features of periodic oxidation of H2 and CO on Pt/CeO2/Al2O3. Appl Catal A 397:35–45CrossRefGoogle Scholar
  28. 28.
    Bruix A, Rodriguez JA, Ramírez PJ, Senanayake SD, Evans J, Park JB, Stacchiola D, Liu P, Hrbek J, Illas F (2012) A new type of strong metal–support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J Am Chem Soc 134:8968–8974CrossRefGoogle Scholar
  29. 29.
    Ohtsuka H (2015) Pt-Rh/CeO2-Al2O3 for controlling emissions from natural gas engines: three-way catalytic activity at low temperatures and effects of SO2 aging. Emiss Control Sci Technol 1:108–116CrossRefGoogle Scholar
  30. 30.
    Yu J, He H, Song L, Qiu W, Zhang G (2015) Preparation of Ir@Pt core-shell nanoparticles and application in three-way catalysts. Catal Lett 145:1514–1520CrossRefGoogle Scholar
  31. 31.
    Guo J, Shi Z, Wu D, Yin H, Gong M, Chen Y (2013) Study of Pt-Rh/CeO2-ZrO2-MxOy (M = Y, La)/Al2O3 three-way catalysts. Appl Surf Sci 273:527–535CrossRefGoogle Scholar
  32. 32.
    Dong X, Nishida M, Hibino T (2013) Proton-conductor-supported ultra-low loading Pt-Rh three-way catalysts. J Phys Chem C 117:1827–1832CrossRefGoogle Scholar
  33. 33.
    Vedyagin AA, Gavrilov MS, Volodin AM, Stoyanovskii VO, Slavinskaya EM, Mishakov IV, Shubin YV (2013) Catalytic purification of exhaust gases over Pd–Rh alloy catalysts. Top Catal 56:1008–1014CrossRefGoogle Scholar
  34. 34.
    Vedyagin AA, Volodin AM, Kenzhin RM, Stoyanovskii VO, Shubin YV, Plyusnin PE, Mishakov IV (2017) Effect of metal-metal and metal-support interaction on activity and stability of Pd Rh/Alumina in CO oxidation. Catal Today 293–294:73–81CrossRefGoogle Scholar
  35. 35.
    Vedyagin AA, Volodin AM, Stoyanovskii VO, Kenzhin RM, Plyusnin PE, Shubin YV, Mishakov IV (2017) Effect of alumina phase transformation on stability of low-loaded Pd-Rh catalysts for CO oxidation. Top Catal 60:152–161CrossRefGoogle Scholar
  36. 36.
    Vedyagin AA, Stoyanovskii VO, Plyusnin PE, Shubin YV, Slavinskaya EM, Mishakov IV (2018) Effect of metal ratio in alumina-supported Pd-Rh nanoalloys on its performance in three way catalysis. J Alloys Compd 749:155–162CrossRefGoogle Scholar
  37. 37.
    Vedyagin AA, Plyusnin PE, Rybinskaya AA, Shubin YV, Mishakov IV, Korenev SV (2018) Synthesis and study of Pd-Rh alloy nanoparticles and alumina-supported low-content Pd-Rh catalysts for CO oxidation. Mater Res Bull 102:196–202CrossRefGoogle Scholar
  38. 38.
    Sha J, Zheng EJ, Zhou WJ, Liebens A, Pera-Titus M (2016) Selective oxidation of fatty alcohol ethoxylates with H2O2 over Au catalysts for the synthesis of alkyl ether carboxylic acids in alkaline solution. J Catal 337:199–207CrossRefGoogle Scholar
  39. 39.
    Ryabenkova Y, Miedziak PJ, Knight DW, Taylor SH, Hutchings GJ (2014) Heterogeneously catalyzed oxidation of butanediols in base free aqueous media. Tetrahedron 70:6055–6058CrossRefGoogle Scholar
  40. 40.
    Xu Y, Liu L, Chong H, Yang S, Xiang J, Meng X, Zhu M (2016) The key gold: enhanced platinum catalysis for the selective hydrogenation of α, β-unsaturated ketone. J Phys Chem C 120:12446–12451CrossRefGoogle Scholar
  41. 41.
    Chu C, Su Z (2014) Facile synthesis of Au–Pt alloy nanoparticles in polyelectrolyte multilayers with enhanced catalytic activity for reduction of 4-nitrophenol. Langmuir 30:15345–15350CrossRefGoogle Scholar
  42. 42.
    Li X, Zheng W, Chen B, Wang L, He G (2016) Rapidly constructing multiple Au–Pt nanoalloy yolk@shell hollow particles in ordered mesoporous silica microspheres for highly efficient catalysis. ACS Sustain Chem Eng 4:2780–2788CrossRefGoogle Scholar
  43. 43.
    Feng JJ, Chen LX, Ma X, Yuan J, Chen JR, Wang AJ, Xu QQ (2017) Bimetallic Au–Pt alloy nanodendrites/reduced graphene oxide: one-pot ionic liquid-assisted synthesis and excellent electro-catalysis towards hydrogen evolution and methanol oxidation reactions. Int J Hydrogen Energ 42:1120–1129CrossRefGoogle Scholar
  44. 44.
    Lu M, Chen D, Xu C, Zhan Y, Yang Lee J (2015) Enhancing the performance of catalytic Au–Pt nanoparticles in non-aqueous lithium–oxygen batteries. Nanoscale 7:12906–12912CrossRefGoogle Scholar
  45. 45.
    Rahmi E, Umar AA, Rahman MYA, Salleh MM, Oyama M (2016) Fibrous Au–Pt bimetallic nano-catalyst with enhanced catalytic performance. RSC Adv 6:27696–27705CrossRefGoogle Scholar
  46. 46.
    Weng X, Liu Y, Wang KK, Feng JJ, Yuan J, Wang AJ, Xu QQ (2016) Single-step aqueous synthesis of Au–Pt alloy nanodendrites with superior electrocatalytic activity for oxygen reduction and hydrogen evolution reaction. Int J Hydrogen Energ 41:18193–18202CrossRefGoogle Scholar
  47. 47.
    Wang AJ, Ju KJ, Zhang QL, Song P, Wei J, Feng JJ (2016) Folic acid bio-inspired route for facile synthesis of Au–Pt nanodendrites as enhanced electrocatalysts for methanol and ethanol oxidation reactions. J Power Sources 326:227–234CrossRefGoogle Scholar
  48. 48.
    Naknam P, Luengnaruemitchai A, Wongkasemjit S, Osuwan S (2007) Preferential catalytic oxidation of carbon monoxide in presence of hydrogen over bimetallic Au–Pt supported on zeolite catalysts. J Power Sources 165:353–358CrossRefGoogle Scholar
  49. 49.
    Shubin YV, Vedyagin AA, Plyusnin PE, Kirilovich AK, Kenzhin RM, Stoyanovskii VO, Korenev SV (2018) The peculiarities of Au-Pt alloy nanoparticles formation during the decomposition of double complex salts. J Alloys Compd 740:935–940CrossRefGoogle Scholar
  50. 50.
    Block BP, Bailar JC (1951) The reaction of gold(III) with some bidentate coordinating groups. J Am Chem Soc 73:4722–4725CrossRefGoogle Scholar
  51. 51.
    Chernyaev I (1964) Synthesis of complex compounds of platinum group metals. Nauka, MoscowGoogle Scholar
  52. 52.
    Tomposa A, Margitfalvi JL, Hegedus M, Szegedia A, Fierro JG, Rojas S (2007) Characterization of trimetallic Pt-Pd-Au/CeO2 catalysts combinatorial designed for methane total oxidation. Comb Chem High Throughput Screen 10:71–82CrossRefGoogle Scholar
  53. 53.
    Graham UM, Khatri RA, Dozier A, Jacobs G, Davis BH (2009) 3D ridge-valley structure of a Pt-ceria catalyst: HRTEM and EELS spectrum imaging. Catal Lett 132:335–341CrossRefGoogle Scholar
  54. 54.
    Watt GW, Klett DS (1966) The infrared spectra and structure of bis(ethylenediamine)palladium(II) and -platinum(II) halides. Inorg Chem 5:1278–1280CrossRefGoogle Scholar
  55. 55.
    Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, Pt, B: Applications in coordination, organometallic and bioinorganic chemistry, 6th edn. Wiley, New YorkGoogle Scholar
  56. 56.
    Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev Sci Eng 38:439–520CrossRefGoogle Scholar
  57. 57.
    Liu HH, Wang Y, Jia AP, Wang SY, Luo MF, Lu JQ (2014) Oxygen vacancy promoted CO oxidation over Pt/CeO2 catalysts: a reaction at Pt-CeO2 interface. Appl Surf Sci 314:725–734CrossRefGoogle Scholar
  58. 58.
    Fierro-Gonzalez JC, Gates BC (2007) Evidence of active species in CO oxidation catalyzed by highly dispersed supported gold. Catal Today 122:201–210CrossRefGoogle Scholar
  59. 59.
    Stiehl JD, Kim TS, McClure SM, Buddie Mullins C (2004) Evidence for molecularly chemisorbed oxygen on TiO2 supported gold nanoclusters and Au(111). J Am Chem Soc 126:1606–1607CrossRefGoogle Scholar
  60. 60.
    Stiehl JD, Kim TS, McClure SM, Buddie Mullins C (2004) Reaction of CO with molecularly chemisorbed oxygen on TiO2-supported gold nanoclusters. J Am Chem Soc 126:13574–13575CrossRefGoogle Scholar
  61. 61.
    Deng X, Min BK, Guloy A, Friend CM (2005) Enhancement of O2 dissociation on Au(111) by adsorbed oxygen: implications for oxidation catalysis. J Am Chem Soc 127:9267–9270CrossRefGoogle Scholar
  62. 62.
    Costello CK, Yang JH, Law HY, Wang Y, Lin J-N, Marks LD, Kung MC, Kung HH (2003) On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3. Appl Catal A 243:15–24CrossRefGoogle Scholar
  63. 63.
    Costello CK, Kung MC, Oh H-S, Wang Y, Kung HH (2002) Nature of the active site for CO oxidation on highly active Au/γ-Al2O3. Appl Catal A 232:159–168CrossRefGoogle Scholar
  64. 64.
    Guzman J, Carrettin S, Fierro-Gonzalez JC, Hao Y, Gates BC, Corma A (2005) CO oxidation catalyzed by supported gold: cooperation between gold and nanocrystalline rare-earth supports forms reactive surface superoxide and peroxide species. Angew Chem Int Ed Engl 44:4778–4781CrossRefGoogle Scholar
  65. 65.
    Pushkarev VV, Kovalchuk VI, d’Itri JL (2004) Probing defect sites on the CeO2 surface with dioxygen. J Phys Chem B 108:5341–5348CrossRefGoogle Scholar
  66. 66.
    Dobrosz-Gómez I, Kocemba I, Rynkowski JM (2008) Au/Ce1−xZrxO2 as effective catalysts for low-temperature CO oxidation. Appl Catal B 83:240–255CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  • Pavel E. Plyusnin
    • 1
    • 2
  • Elena M. Slavinskaya
    • 3
  • Roman M. Kenzhin
    • 3
  • Anastasiya K. Kirilovich
    • 1
    • 2
  • Evgeniya V. Makotchenko
    • 1
  • Olga A. Stonkus
    • 2
    • 3
  • Yury V. Shubin
    • 1
    • 2
  • Aleksey A. Vedyagin
    • 3
    • 4
    Email author
  1. 1.Nikolaev Institute of Inorganic Chemistry SB RASNovosibirskRussian Federation
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussian Federation
  3. 3.Boreskov Institute of Catalysis SB RASNovosibirskRussian Federation
  4. 4.National Research Tomsk Polytechnic UniversityTomskRussian Federation

Personalised recommendations