Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 2, pp 987–1001 | Cite as

Chemical fixation of CO2: the influence of linear amphiphilic anions on surface active ionic liquids (SAILs) as catalysts for synthesis of cyclic carbonates under solvent-free conditions

  • Michele O. Vieira
  • Wesley F. Monteiro
  • Bruna S. Neto
  • Vitaly V. Chaban
  • Rosane Ligabue
  • Sandra EinloftEmail author


Carbon dioxide (CO2) conversion is an efficient option to mitigate environmental impacts caused by CO2 high concentration in the atmosphere. In this work are described catalytic activities of surface active ionic liquids (SAILs) composed of well-known cations 1-butyl-3-methylimidazolium ([bmim+]) and tetra-n-butylammonium ([TBA+]) and long alkyl chain anions: lauryl sulfate ([C12SO4]), lauryl ether sulfate ([C12ESO4]), lauryl benzene sulfonate ([C12BSO3]) and lauroyl sarcosinate ([C12SAR]) for cyclic carbonate synthesis. Results evidenced that [TBA+] is more active as a catalyst due to its higher molecular volume increasing the cation–anion distance and weakening the electrostatic interaction resulting in a more electrophilic cation. The [TBA][C12BSO3] SAIL presented better catalytic activity for styrene carbonate (SC) synthesis, reaching 81.4% of conversion and 87.0% of selectivity as well as the high recycle capacity and possible application as catalyst for the syntheses of different cyclic carbonates: glycidyl isopropyl ether carbonate (GC) and epichlorohydrin carbonate (EC).


Carbon dioxide Catalysis Cycloaddition Ionic liquid Cyclic carbonate 



This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior – Brasil (CAPES) – Finance Code 001. SE thanks CNPq for research scholarship.

Supplementary material

11144_2019_1544_MOESM1_ESM.docx (196 kb)
Supplementary material 1 (DOCX 195 kb)


  1. 1.
    Zoundi Z (2017) CO2 emissions, renewable energy and the Environmental Kuznets Curve, a panel cointegration approach. Renew Sust Energ Rev 72:1067–1075CrossRefGoogle Scholar
  2. 2.
    De Souza ALA, Vieira MO, Polesso BB, Cobalchini FW, Bernard FL, Vecchia FD, Einloft S (2018) Sorção de CO2 utilizando líquido iônico aditivado com extensores de área superficial. Quim Nova 41(6):656–661Google Scholar
  3. 3.
    Otto A, Grube T, Schiebahn S, Stolten D (2015) Closing the loop: captured CO2 as a feedstock in the chemical industry. Energy Environ Sci 8:3283–3297CrossRefGoogle Scholar
  4. 4.
    Rafiee A, Khalilpour RK, Milani D, Panahi M (2018) Trends in CO2 conversion and utilization: a review from process systems perspective. J Environ Chem Eng 6:5771–5794CrossRefGoogle Scholar
  5. 5.
    Song QW, Zhou ZH, He LN (2017) Efficient, selective and sustainable catalysis of carbon dioxide. Green Chem 19:3707–3728CrossRefGoogle Scholar
  6. 6.
    Vieira MO, Aquino AS, Schütz MK, Vecchia FD, Ligabue R, Seferin M, Einloft S (2017) Chemical conversion of CO2: evaluation of different ionic liquids as catalysts in dimethyl carbonate synthesis. Energy Procedia 114:7141–7149CrossRefGoogle Scholar
  7. 7.
    Bobbink FD, Dyson PJ (2016) Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: state-of-the-art and beyond. J Catal 343:52–61CrossRefGoogle Scholar
  8. 8.
    Zhang X, Geng W, Yue C, Wu W, Xiao L (2016) Multilayered supported ionic liquids bearing a carboxyl group: highly efficient catalysts for chemical fixation of carbon dioxide. J Environ Chem Eng 4(2):2565–2572CrossRefGoogle Scholar
  9. 9.
    Ji L, Luo Z, Zhang Y, Wang R, Ji Y, Xia F, Gao G (2018) Imidazolium ionic liquids/organic bases: efficient intermolecular synergistic catalysts for the cycloaddition of CO2 and epoxides under atmospheric pressure. Mol Catal 446:124–130CrossRefGoogle Scholar
  10. 10.
    Aquino AS, Bernard FL, Vieira MO, Borges JV, Rojas MF, Vecchia FD, Ligabue RA, Seferin M, Menezes S, Einloft S (2014) A new approach to CO2 capture and conversion using imidazolium based-ionic liquids as sorbent and catalyst. J Braz Chem Soc 25(12):2251–2257Google Scholar
  11. 11.
    Zhu Z, Zhang Y, Wang K, Fu X, Chen F, Jing H (2016) Chiral oligomers of spiro-salencobalt(III)X for catalytic asymmetric cycloaddition of epoxides with CO2. Catal Commun 81:50–53CrossRefGoogle Scholar
  12. 12.
    Feng C, Guo C, Hu D, Guo J, Cao X, Akram N, Wang J (2018) Catalytic performance of Co 1,3,5-benzenetricarboxylate in the conversion of CO2 to cyclic carbonates. Reac Kinet Mech Cat 125(2):633–645CrossRefGoogle Scholar
  13. 13.
    Aquino AS, Bernard FL, Borges JV, Mafra L, Vecchia FD, Vieira MO, Ligabue R, Seferin M, Chaban VV, Cabrita EJ, Einloft S (2015) Rationalizing the role of the anion in CO2 capture and conversion using imidazolium-based ionic liquid modified mesoporous silica. RSC Adv 5:64220–64227CrossRefGoogle Scholar
  14. 14.
    Monteiro WF, Vieira MO, Aquino AS, Souza MO, Lima J, Einloft S, Ligabue R (2017) CO2 conversion to propylene carbonate catalyzed by ionic liquid containing organosilane groups supported on titanate nanotubes/nanowires. Appl Catal A-Gen 544:46–54CrossRefGoogle Scholar
  15. 15.
    Nourian M, Zadehahmadi F, Kardanpour R, Tangestaninejad S, Moghadam M, Mirkhani V, Baltork IM, Bahadori M (2017) Chemical fixation of carbon dioxide catalyzed by magnetically recoverable NH2-MIL-101(Al) as an elegant nanoreactor. Catal Commun 94:42–46CrossRefGoogle Scholar
  16. 16.
    Karamé I, Zaher S, Eid N, Christ L (2018) New zinc/tetradentate N4 ligand complexes: efficient catalysts for solvent-free preparation of cyclic carbonates by CO2/epoxide coupling. Mol Catal 456:87–95CrossRefGoogle Scholar
  17. 17.
    Bharmoria P, Mehta MJ, Pancha I, Kumar A (2014) Structural and functional stability of cellulase in aqueous-biamphiphilic ionic liquid surfactant solution. J Phys Chem B 118(33):9890–9899CrossRefPubMedGoogle Scholar
  18. 18.
    Vekariya RL, Dhar A, Lunagariya J (2017) Synthesis and characterization of double –SO3H functionalized Brönsted acidic hydrogensulfate ionic liquid confined with silica through sol-gel method. Compos Interfaces 24:801–816CrossRefGoogle Scholar
  19. 19.
    Vekariya RL, Kumar NS (2017) Micellization behaviour of surface active N-alkyl pyridinium dodecylsulphate task-specific ionic liquids in aqueous solutions. Colloid Surf A-Physicochem Eng Asp 529:203–209CrossRefGoogle Scholar
  20. 20.
    Vieira MO, Monteiro WF, Ligabue R, Seferin M, Chaban VV, Andreeva NA, Nascimento JF, Einloft S (2017) Ionic liquids composed of linear amphiphilic anions: synthesis, physicochemical characterization, hydrophilicity and interaction with carbon dioxide. J Mol Liq 241:64–73CrossRefGoogle Scholar
  21. 21.
    Müller E, Zahnweh L, Estrine B, Zech O, Allolio C, Heilmann J, Kunz W (2018) Oligoether carboxylate counterions: an innovative way towards surfactant ionic liquids. J Mol Liq 251:61–69CrossRefGoogle Scholar
  22. 22.
    Zhao Y, Chen X, Jing B, Wang X, Ma F (2009) Novel gel phase formed by mixing a cationic surfactive ionic liquid C16mimCl and an anionic surfactant SDS in aqueous solution. J Phys Chem B 113(4):983–988CrossRefPubMedGoogle Scholar
  23. 23.
    Selwent A, Łuczak J (2016) Micellar aggregation of Triton X-100 surfactant in imidazolium ionic liquids. J Mol Liq 221:557–566CrossRefGoogle Scholar
  24. 24.
    Porada JH, Mansueto M, Laschat S, Stubenrauch C (2017) Microemulsions with hydrophobic ionic liquids: influence of the structure of the anion. J Mol Liq 227:202–209CrossRefGoogle Scholar
  25. 25.
    Jasiak K, Siewniak A, Kopczynska K, Chrobok A, Baj S (2016) Hydrogensulphate ionic liquids as an efficient catalyst for the synthesis of cyclic carbonates from carbon dioxide and epoxides. J Chem Technol Biotechnol 91:2827–2833CrossRefGoogle Scholar
  26. 26.
    Vieira MO, Monteiro WF, Neto BS, Ligabue R, Chaban VV, Einloft S (2018) Surface active ionic liquids as catalyst for CO2 conversion to propylene carbonate. Catal Lett 148:108–118CrossRefGoogle Scholar
  27. 27.
    Jawad A, Rezaei F, Rownaghi AA (2017) Porous polymeric hollow fibers as bifunctional catalysts for CO2 conversion to cyclic carbonates. J CO2 Util 21:589–596CrossRefGoogle Scholar
  28. 28.
    Lee C, Yang W, Parr RG (1988) Development of the Colic-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789CrossRefGoogle Scholar
  29. 29.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100CrossRefGoogle Scholar
  30. 30.
    Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44(2):129–138CrossRefGoogle Scholar
  31. 31.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M Jr, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14(11):1347–1363CrossRefGoogle Scholar
  32. 32.
    Zhu M, Srinivas D, Bhogeswararao S, Ratnasamy P, Carreon MA (2013) Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide. Catal Commun 32:36–40CrossRefGoogle Scholar
  33. 33.
    Sun J, Fujita S, Bhanage BM, Arai M (2004) One-pot synthesis of styrene carbonate from styrene in tetrabutylammonium bromide. Catal Today 93:383–388CrossRefGoogle Scholar
  34. 34.
    Montoya CA, Paninho AB, Felix PM, Zakrzewska ME, Vital J, Visak VN, Nunes AVM (2015) Styrene carbonate synthesis from CO2 using tetrabutylammonium bromide as a non-supported heterogeneous catalyst phase. J Supercrit Fluids 100:155–159CrossRefGoogle Scholar
  35. 35.
    Paninho AB, Ventura ALR, Branco LC, Pombeiro AJL, Silva MFCG, Ponte MN, Mahmudov KT, Nunes AVM (2018) CO2 + ionic liquid biphasic system for reaction/product separation in the synthesis of cyclic carbonates. J Supercrit Fluids 132:71–75CrossRefGoogle Scholar
  36. 36.
    Xiao LF, Yue QF, Xia CG, Xu LW (2008) Supported basic ionic liquid: highly effective catalyst for the synthesis of 1,2-propylene glycol from hydrolysis of propylene carbonate. J Mol Catal A-Chem 279:230–234CrossRefGoogle Scholar
  37. 37.
    Jin X, Bobba P, Reding N, Song Z, Thapa PS, Prasad G, Subramaniam B, Chaudhari RV (2017) Kinetic modeling of carboxylation of propylene oxide to propylene carbonate using ion-exchange resin catalyst in a semi-batch slurry reactor. Chem Eng Sci 168:189–203CrossRefGoogle Scholar
  38. 38.
    Ju HY, Manju MD, Kim KH, Park SW, Park DW (2008) Catalytic performance of quaternary ammonium salts in the reaction of butyl glycidyl ether and carbon dioxide. J Ind Eng Chem 14(2):157–160CrossRefGoogle Scholar
  39. 39.
    North M, Pasquale R (2009) Mechanism of cyclic carbonate synthesis from epoxides and CO2. Angew Chem 121:2990–2992CrossRefGoogle Scholar
  40. 40.
    Kim HS, Kim JJ, Kim H, Jang HG (2003) Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. J Catal 220(1):44–46CrossRefGoogle Scholar
  41. 41.
    Sun J, Fujita S, Arai M (2005) Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. J Organomet Chem 690(15):3490–3497CrossRefGoogle Scholar
  42. 42.
    Zhang H, Kong X, Cao C, Pang G, Shi Y (2016) An efficient ternary catalyst ZnBr2/K2CO3/[Bmim]Br for chemical fixation of CO2 into cyclic carbonates at ambient conditions. J CO2 Util 14:76–82CrossRefGoogle Scholar
  43. 43.
    Dai W, Yang W, Zhang Y, Wang D, Luo X, Tu X (2017) Novel isothiouronium ionic liquid as efficient catalysts for the synthesis of cyclic carbonates from CO2 and epoxides. J CO2 Util 17:256–262CrossRefGoogle Scholar
  44. 44.
    Li B (2018) A novel metal-organic framework as a heterogeneous catalysis for the solvent-free conversion of CO2 and epoxides into cyclic carbonate. Inorg Chem Commun 88:56–59CrossRefGoogle Scholar
  45. 45.
    Wu Y, Song X, Li S, Zhang J, Yang X, Shen P, Gao L, Wei R, Zhang J, Xiao G (2018) 3D-monoclinic M-BTC MOF (M = Mn Co, Ni) as highly efficient catalysts for chemical fixation of CO2 into cyclic carbonates. J Ind Eng Chem 58:296–303CrossRefGoogle Scholar
  46. 46.
    Zhang X, Chen Z, Yang X, Li M, Chen C, Zhang N (2018) The fixation of carbon dioxide with epoxides catalyzed by cation-exchanged metal-organic framework. Microporous Mesoporous Mat 258:55–61CrossRefGoogle Scholar
  47. 47.
    Zhang Y, Tan Z, Liu B, Mao D, Xiong C (2015) Coconut shell activated carbon tethered ionic liquids for continuous cycloaddition of CO2 to epichlorohydrin in packed bed reactor. Catal Commun 68:73–76CrossRefGoogle Scholar
  48. 48.
    Sogukomerogullari HG, Aytar E, Ulusoy M, Demir S, Dege N, Richeson DS, Sönmez M (2018) Synthesis of complexes Fe, Co and Cu supported by “SNS” pincer ligands and their ability to catalytically form cyclic carbonates. Inorg Chim Acta 471:290–296CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Post-Graduation Program in Materials Engineering and TechnologyPontifical Catholic University of Rio Grande do Sul - PUCRSPorto AlegreBrazil
  2. 2.School of TechnologyPontifical Catholic University of Rio Grande do Sul - PUCRSPorto AlegreBrazil
  3. 3.P.E.SSaint PetersburgRussian Federation
  4. 4.School of SciencesPontifical Catholic University of Rio Grande do Sul - PUCRSPorto AlegreBrazil

Personalised recommendations