Advertisement

Protection of industrially-relevant Pd/C catalysts for cyclohexene hydrogenation: effect of a siliceous coating on the thermal treatment of covered catalysts

  • Vincent Dubois
  • Didier Desmecht
  • Laylla Rkiouak
  • Anne-Sophie Jacquet
  • Tomoya Hoshinoo
  • Keizo Nakagawa
  • Sophie HermansEmail author
Article

Abstract

Carbon-supported palladium catalysts were covered by a siliceous layer to increase their sintering resistance. A commercial Pd/C catalyst was compared to catalysts prepared either by dry impregnation or wet impregnation on activated carbon or carbon black. In the case of dry impregnation, the Pd active phase was shown to be located within the micropores of the carbon support. A smooth and thick siliceous layer was evidenced by electron microscopy. XPS showed that Pd was indeed covered by a layer containing Si atoms. In all cases, the catalytic activity was diminished by the presence of the protecting layer, but thermal treatment allowed increasing the activity by creating some porosity within the layer, therefore allowing access to the underlying active phase, without deleterious sintering. Carbon black proved its superiority thanks to its non-microporous nature, which allowed the Pd particles to be located at the interface with the siliceous coating hence making them more accessible.

Keywords

Palladium Carbon Silica Protection Sintering Deactivation 

Notes

Acknowledgements

The authors wish to thank the Fonds de la Recherche Scientifique (FRS-FNRS, Belgium) with the assistance of the Fédération Wallonie-Bruxelles and the Belgian National Lottery, as well as the Université catholique de Louvain for funding. We are also grateful to the JSPS (KAKENHI Grant Number 22760599, Japan) for funding. We thank as well Johnson Matthey for the JM440 sample and Grégory Ploegaerts for ICP analyses.

References

  1. 1.
    Blaser H-U, Indolese A, Schnyder A, Steiner H, Studer M (2001) J Mol Catal A 173:3–18CrossRefGoogle Scholar
  2. 2.
    Yin L, Liebscher J (2007) Chem Rev 107:133–173CrossRefGoogle Scholar
  3. 3.
    Toebes ML, van Dillen JA, de Jong KP (2001) J Mol Catal A 173:75–98CrossRefGoogle Scholar
  4. 4.
    Hermans S, Wenkin M, Devillers M (1998) J Mol Catal A 136:59–68CrossRefGoogle Scholar
  5. 5.
    Hermans S, Diverchy C, Demoulin O, Dubois V, Gaigneaux EM, Devillers M (2006) J Catal 243:239–251CrossRefGoogle Scholar
  6. 6.
    Deffernez A, Hermans S, Devillers M (2007) J Phys Chem C 111:9448–9459CrossRefGoogle Scholar
  7. 7.
    Hermans S, Thiltges F, Deffernez A, Devillers M (2012) Catal Lett 142:521–530CrossRefGoogle Scholar
  8. 8.
    Willocq C, Dubois V, Khimyak YZ, Devillers M, Hermans S (2012) J Mol Catal A 365:172–180CrossRefGoogle Scholar
  9. 9.
    Hermans S, Diverchy C, Dubois V, Devillers M (2014) Appl Catal A 474:263–271CrossRefGoogle Scholar
  10. 10.
    Maxted EB (1951) Adv Catal 3:129–178Google Scholar
  11. 11.
    Petró J (1976) In: Szabó ZG, Kalló D (eds) Contact catalysis, vol 2. Elsevier, Amsterdam, pp 65–75Google Scholar
  12. 12.
    Hegedus LL, McCabe RW (1984) Catalyst poisoning. Marcel Dekker, New YorkGoogle Scholar
  13. 13.
    Bartholomew CH (2001) Appl Catal A 212:17–60CrossRefGoogle Scholar
  14. 14.
    Hegedűs L, Máthé T (2002) Appl Catal A 226:319–322CrossRefGoogle Scholar
  15. 15.
    Moulijn JA, van Diepen AE, Kapteijn FF (2008) In: Ertl G, Knözinger H, Schüth F, Weitkamp J (eds) Handbook of heterogeneous catalysis. Wiley, Weinheim, pp 1829–1845Google Scholar
  16. 16.
    Argyle MD, Bartholomew CH (2015) Catalysts 5:145–269CrossRefGoogle Scholar
  17. 17.
    Albers P, Pietsch J, Parker SF (2001) J Mol Catal A 173:275–286CrossRefGoogle Scholar
  18. 18.
    Moulijn JA, van Diepen AE, Kapteijn F (2001) Appl Catal A 212:3–16CrossRefGoogle Scholar
  19. 19.
    Lange J-P (2015) Angew Chem Int Ed 54:13186–13197CrossRefGoogle Scholar
  20. 20.
    Sádaba I, López Granados M, Riisager A, Taarning E (2015) Green Chem 17:4133–4145CrossRefGoogle Scholar
  21. 21.
    An K, Zhang Q, Alayoglu S, Musselwhite N, Shin J-Y, Somorjai GA (2014) Nano Lett 14:4907–4912CrossRefGoogle Scholar
  22. 22.
    Dai Y, Lim B, Yang Y, Cobley CM, Li W, Cho EC, Grayson B, Fanson PT, Campbell CT, Sun Y, Xia Y (2010) Angew Chem Int Ed 49:8165–8168CrossRefGoogle Scholar
  23. 23.
    Oh J-G, Oh H-S, Hee Lee W, Kim H (2012) J Mater Chem 22:15215–15220CrossRefGoogle Scholar
  24. 24.
    Montini T, Condo AM, Hickey N, Lovey FC, De Rogatis L, Fornasiero P, Graziani M (2007) Appl Catal B 73:84–97CrossRefGoogle Scholar
  25. 25.
    Liu H, Zhang L, Wang N, Sheng SuD (2014) Angew Chem Int Ed 53:12634–12638Google Scholar
  26. 26.
    Zhang C, Zhou Y, Zhang Y, Zhang Z, Xu Y, Wang Q (2015) Powder Technol 284:387–395CrossRefGoogle Scholar
  27. 27.
    Zhang N, Xu Y-J (2013) Chem Mater 25:1979–1988CrossRefGoogle Scholar
  28. 28.
    Comandella D, Woszidlo S, Georgi A, Kopinke F-D, Mackenzie K (2016) Appl Catal B 186:204–211CrossRefGoogle Scholar
  29. 29.
    Simescu-Lazar F, Meille V, Pallier S, Chaînet E, De Bellefon C (2013) Appl Catal A 453:28–33CrossRefGoogle Scholar
  30. 30.
    Takenaka S, Matsumori H, Nakagawa K, Matsune H, Tanabe E, Kishida M (2007) J Phys Chem C 111:15133–15136CrossRefGoogle Scholar
  31. 31.
    Nakagawa K, Tanimoto Y, Sotawa K, Sugiyama S, Takenaka S, Kishida M (2009) Chem Lett 38:480–481CrossRefGoogle Scholar
  32. 32.
    Nakagawa K, Tanimoto Y, Okayama T, Sotowa K, Sugiyama S, Moriga T (2010) Stud Surf Sci Catal 175:201–208CrossRefGoogle Scholar
  33. 33.
    Nakagawa K, Tanimoto Y, Okayama T, Sotowa K, Sugiyama S, Takenaka S, Kishida M (2010) Catal Lett 136:71–76CrossRefGoogle Scholar
  34. 34.
    Nakagawa K, Okayama T, Tanimoto Y, Sotowa K, Sugiyama S, Moriga T, Takenaka S, Mishida M (2012) Appl Catal A 13:419–420Google Scholar
  35. 35.
    Dubois V, Jannes G (2013) Appl Catal A 468:459–466CrossRefGoogle Scholar
  36. 36.
    Dubois V, Jannes G, Verhasselt P (1997) Stud Surf Sci Catal 108:263–271CrossRefGoogle Scholar
  37. 37.
    Lemaitre JL, Menon PG, Delannay F (1984) The measurement of catalyst dispersion. In: Delannay F (ed) Characterization of heterogenous catalysts. Marcel Dekker, New YorkGoogle Scholar
  38. 38.
    Krishnankutty N, Vannice MA (1995) J Catal 155:312–326CrossRefGoogle Scholar
  39. 39.
    Dubois V, Dal Y, Jannes G (2002) Stud Surf Sci Catal 143:993–1002CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Laboratoire de Chimie Physique et CatalyseLABIRISBrusselsBelgium
  2. 2.Department of Advanced Materials, Institute of Technology and ScienceTokushima UniversityTokushimaJapan
  3. 3.Division of Advanced Membrane Science and Technology, Graduate School of Science, Technology and InovationKobe UniversityKobeJapan
  4. 4.Institute of Condensed Matter and Nanosciences (IMCN)Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations