Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 1, pp 561–573 | Cite as

The role of the reactive oxygen species and the influence of KBiO3 synthesis method in the photodegradation of methylene blue and ciprofloxacin

  • Teresa Montalvo-Herrera
  • D. Sánchez-MartínezEmail author
  • D. B. Hernandez-Uresti
  • Leticia M. Torres-Martínez


KBiO3 was synthesized by three methods: chemical substitution, hydrothermal and sonochemical. All reaction products were analyzed by X-ray powder diffraction and reveal that KBiO3 presents a cubic structure. The morphology of each sample was analyzed with scanning electron microscopy (SEM), and the micrographs show particles with cube-like (chemical substitution), spheres-like (sonochemical) and flakes-like (hydrothermal) shape. HR-TEM technique was used to confirm the crystal structure and to determine the particle size of the samples, also it was used to corroborate the morphology. The photocatalytic activity of KBiO3 was evaluated on the reactions of the degradation of methylene blue (MB) and Ciprofloxacin (CPFX). An almost 100% discoloration of MB was reached at 120 min with KBiO3 obtained by the sonochemical method and a 67% degradation of CPFX was obtained by KBiO3 synthesized by the hydrothermal method. These results were associated with the catalyst morphology and organic adsorption on the surface of the catalyst. With the aim for a further understanding of the photocatalytic degradation of MB and CPFX, scavengers such as benzoquinone, isopropanol, and catalase were added to the photocatalytic reaction in order to identify the reactive oxygen species (ROS) involved. It has been found that hydrogen peroxide (H2O2) was the primary oxidizing species for the degradation of MB; meanwhile in the case of the oxidation of CPFX occurred by the presence of the superoxide radical (O 2 −· ).


KBiO3 Reactive oxygen species Photocatalysis Organic pollutants Scavengers 



The authors wish to thank the Universidad Autónoma de Nuevo León (UANL) for its invaluable support; FIC, for support of Project PAIFIC/2018-6; CONACYT, for support of Project CB-2013-01 Clave: 220802 and CB-2014 Clave: 237049, Problemas Nacionales PN-2015-01-610; SEP, for support of Project PFCE 2017–2018 Apoyo al CA-UANL-244 and REDES TEMÁTICAS 2015-CA-UANL-244.

Supplementary material

11144_2018_1521_MOESM1_ESM.docx (91 kb)
Supplementary material 1 (DOCX 91 kb)


  1. 1.
    Arfanis MK, Adamou P, Moustakas NG, Triantis TM, Kontos AG, Falaras P (2017) Photocatalytic degradation of salicylic acid and caffeine emerging contaminants using titania nanotubes. Chem Eng J 302:525–536CrossRefGoogle Scholar
  2. 2.
    Jain R, Goyal S, Kadam S (2017) Photocatalytic degradation of antibiotic rifabutin in the presence of TiO2 nanocatalyst assisted UV radiation. J Sci Ind Res 76:442–445Google Scholar
  3. 3.
    Tomašević A, Mijin D, Marinković A, Radišić M, Prlainović N, Đurović-Pejčev R, Gašić S (2017) The photocatalytic degradation of carbofuran and furadan 35ST: the influence of inert ingredients. Environ Sci Pollut Res 24:13808CrossRefGoogle Scholar
  4. 4.
    Berberidou C, Kitsiou V, Kazala E, Lambropoulou DA, Kouras A, Kosma CI, Albanis TA, Poulios I (2017) Study of the decomposition and detoxification of the herbicide bentazon by heterogeneous photocatalysis: kinects, intermediates and transformation pathways. Appl Catal B Environ 200:150–163CrossRefGoogle Scholar
  5. 5.
    Ohko Y, Iuchi KI, Niwa C, Tatsuma T, Nakashima T, Iguchi T, Kubota Y, Fujushima A (2002) 17β-Estradiol degradation by TiO2 photocatalysis as a means of reducing estrogenic activity. Environ Sci Technol 36:4175–4181CrossRefGoogle Scholar
  6. 6.
    Berhardt LV (2012) Advances in medicine and biology, vol 55. Nova Science, New YorkGoogle Scholar
  7. 7.
    Laine L, Hunt R, El-Zimaity H, Nguyen B, Osato M, Spénard J (2003) Bismuth-based quadruple therapy using a single capsule of bismuth biskalcitrate, metronidazole, and tetracycline given with omeprazole versus omeprazole, amoxicillin, and clarithromycin for eradication of Helicobacter pylori in duodenal ulcer patients: a prospective, randomized, multicenter, North American trial. Am J Gastroenterol 3:562–567CrossRefGoogle Scholar
  8. 8.
    Sweeney SJ, Jin SR (2013) Bismide-nitride alloys: promising for efficient light emitting devices in the near-and-mid-infrared. J Appl Phys 113:043110–043116CrossRefGoogle Scholar
  9. 9.
    Das U, Dhar S (2017) The influence of N and Bi on the band gap and band interactions in a proposed material GaSb1-x-yNyBix/GaSb: a theoretical approach. J Mater Sci 52:5611–5616CrossRefGoogle Scholar
  10. 10.
    Wei GN, Dai X, Feng Q, Luo WG, Li YY, Wang K, Zhang LY, Pan WW, Wang SM, Yang SY, Wang KY (2017) The effect of Bi composition on the electrical properties of InP1–xBix. Sci China Phys Mech Astron 60:047022–047024CrossRefGoogle Scholar
  11. 11.
    Hou R, Yang XL, Liu YQ, Xu YH (2017) Visible-light photocatalytic degradation of glyphosate prepared by different co-precipitation methods. Mater Res Bull 88:56–61CrossRefGoogle Scholar
  12. 12.
    Lou W, Tang J, Zou Z, Ye J (2008) Preparation and photophysical properties of some oxides in Ca–Bi–O system. J Alloys Compd 455:346–352CrossRefGoogle Scholar
  13. 13.
    Chen CC, Fan T (2017) Study on carbon quantum dots/BiFeO3 heterostructures and their enhanced photocatalytic activities under visible light irradiation. J Mater Sci 28:10019–10027Google Scholar
  14. 14.
    Ding Y, Zhou P, Tang H (2016) Visible-light photocatalytic degradation of bisphenol A on NaBiO3 nanosheets in a wide pH range: a synergistic effect between photocatalytic oxidation and chemical oxidation. Chem Eng J 291:149–160CrossRefGoogle Scholar
  15. 15.
    Ramachandran R, Sathiya M, Ramesha K, Prakash AS, Madras G, Shukla K (2011) Photocatalytic properties of KBiO3 and LiBiO3 with tunnel structures. J Chem Sci 123:517–524CrossRefGoogle Scholar
  16. 16.
    Takei T, Haramoto R, Dong Q, Kumada N, Yoneseki Y, Kinomura N, Mano T, Nishimoto S, Kameshima Y, Miyake M (2011) Photocatalytic activities of various pentavalent bismuthates under visible light irradiation. J Solid State Chem 184:2017–2022CrossRefGoogle Scholar
  17. 17.
    Jaeger CD, Bard AJ (1979) Spin trapping and electro spin resonance detection of radical intermediates in the photodecomposition of water at TiO2 particulate system. J Phys Chem 83:3146–3152CrossRefGoogle Scholar
  18. 18.
    Harbour JR, Tromp J, Hair ML (1985) Photogeneration of hydrogen peroxide in aqueous TiO2 dispersions. Can J Chem 63:204–208CrossRefGoogle Scholar
  19. 19.
    Nasaka Y, Yamashita Y, Fukuyama H (1997) Application of chemiluminescent probe to monitoring superoxide radicals and hydrogen peroxide in TiO2 photocatalysis. J Phys Chem B 101:5822–5827CrossRefGoogle Scholar
  20. 20.
    Rungjaroentawon N, Onsuratoom S, Chavadej S (2012) Hydrogen production from water splitting under visible light irradiation using sensitized mesoporous-assembled TiO2–SiO2 mixed oxide photocatalysis. Int J Hydrogen Energy 37:11061–11071CrossRefGoogle Scholar
  21. 21.
    Li D, Haneda H (2003) Morphology of zinc oxide particles and their effects on photocatalysis. Chemosphere 51:129–137CrossRefGoogle Scholar
  22. 22.
    Khono M, Ogura S, Sato K, Inoue Y (1996) Effect of tunnel structures of BaTi4O9 and Na2Ti6O13 on photocatalytic activity and photoexcited charge separation. Stud Surf Sci Catal 101:143–152CrossRefGoogle Scholar
  23. 23.
    Hirakawa T, Yawata K, Nosaka Y (2007) Photocatalytic reactivity for O2 and OH· radical formation in anatase and rutile TiO2 suspensions as the effect of H2O2 addition. Appl Catal A 325:105–111CrossRefGoogle Scholar
  24. 24.
    Palominos RA, Moncada MA, Giraldo A, Peñuela G, Pérez-Moya M, Mansilla HD (2009) Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catal Today 144:100–105CrossRefGoogle Scholar
  25. 25.
    Montalvo-Herrera T, Sánchez-Martínez D, Torres-Martínez LM (2017) Sonochemical synthesis of CaBi6O10 nanoplates: photocatalytic degradation of organic pollutants (ciprofloxacin and methylene blue) and oxidizing species study (h+, OH·, H2O2 and O2·−). J Chem Technol Biotechnol 92:1496–1502CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Facultad de Ingeniería Civil-Departamento de Ecomateriales y EnergíaUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico
  2. 2.Facultad de Ciencias Físico MatemáticasUniversidad Autónoma de Nuevo LeónSan Nicolás de los GarzaMexico

Personalised recommendations