Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 1, pp 353–364 | Cite as

Unified catalytic oxidation–adsorption desulfurization for aromatic sulfur compounds with cyclohexanone peroxide over Ti-HMS

  • Xingqi Lin
  • Xingye Zeng
  • Rujin Zhou
  • Hanlu WangEmail author


Three kinds of Ti-HMS zeolites have been synthesized by using different templates, and their catalytic performance was investigated in deep oxidation-adsorption desulfurization process. Various analysis techniques have been applied to investigate physical and chemical properties of the catalysts. Using cyclohexanone peroxide as an oxidant, the catalytic performance results show that Ti-HMS-12 exhibits highest desulfurization performance (99.9%) without solvents. Dibenzothiophene (DBT) was almost completely oxidized to the more polar DBT sulfone, which could be subsequently adsorbed on the Ti-HMS-12, achieving a unified processes of oxidative-adsorption desulfurization process. Furthermore, the catalyst was recycled for five runs with slight decreases in the catalytic performance and can be easily regenerated by methanol washing.


Ti-HMS Solvent Adsorption Oxidation Desulfurization 



This work was supported by the Training Program for Outstanding Young Teachers in Universities in Guangdong Province (Grant No. YQ2015116), and Maoming Public Service Platform for transformation upgrading and Technological Innovation of Petrochemical Industry (2016B020211002), the National Natural Science Foundation of China (Grant No. 21403038), the Natural Science Foundation of Guangdong Province (Grant No. 2015A030313892).

Supplementary material

11144_2018_1520_MOESM1_ESM.docx (2.3 mb)
Supplementary material 1 (DOCX 2355 kb)


  1. 1.
    Iriarte V, Cruz-Reyes J, Del Valle M, Alonso G, Fuentes S, Paraguay-Delgado F, Romero-Rivera R (2017) React Kinet Mech Cat 121(2):593–605Google Scholar
  2. 2.
    Varga Z, Szarvas T, Tétényi P, Hancsók J, Ollár T (2018) React Kinet Mech Cat 124(1):61–74Google Scholar
  3. 3.
    Tian F, Shen Q, Fu Z, Wu Y, Jia C (2014) Fule Process Technol 128:176–182Google Scholar
  4. 4.
    Ullah R, Zhang Z, Bai P, Wu P, Han D, Etim UJ, Yan Z (2016) Ind Eng Chem Res 55(13):3751–3758Google Scholar
  5. 5.
    Kilbane JJ, Stark B (2016) World J Microb Biot 32(8):137Google Scholar
  6. 6.
    Yao T, Yao S, Pan C, Dai X, Song H (2016) Energy Fuels 30(6):4740–4749Google Scholar
  7. 7.
    Li C, Li D, Zou S, Li Z, Yin J, Wang A, Cui Y, Yao Z, Zhao Q (2013) Green Chem 15(10):2793–2799Google Scholar
  8. 8.
    Alvarez-Amparán MA, Cedeño-Caero L, Cortes-Jácome MA, Toledo-Antonio JA (2017) React Kinet Mech Cat 122(2):869–885Google Scholar
  9. 9.
    Wang G, Han Y, Wang F, Chu Y, Chen X (2015) React Kinet Mech Cat 115(2):679–690Google Scholar
  10. 10.
    Li H, He L, Lu J, Zhu W, Xue J, Yan W, Yan Y (2015) Energy Fuels 23(3):1354–1357Google Scholar
  11. 11.
    Zhou M, Meng W, Li Y, Wang Q, Li X, Zang S (2014) Energy Fuels 28(1):516–521Google Scholar
  12. 12.
    Chen Y, Song H-Y, Lu Y-Z, Meng H, Li C-X, Lei Z-G, Chen B-H (2016) Ind Eng Chem Res 55(39):10394–10403Google Scholar
  13. 13.
    Bazyari A, Khodadadi AA, Haghighat Mamaghani A, Beheshtian J, Thompson LT, Mortazavi Y (2016) Appl Catal B 180:65–77Google Scholar
  14. 14.
    Shen C, Wang YJ, Xu JH, Luo GS (2015) Chem Eng J 259:552–561Google Scholar
  15. 15.
    Du S, Li F, Sun Q, Wang N, Jia M, Yu J (2016) Chem Commun 52(16):3368–3371Google Scholar
  16. 16.
    Yue D, Lei J, Peng Y, Li J, Du X (2018) Fuel 226:148–155Google Scholar
  17. 17.
    Barker CM, Gleeson D, Kaltsoyannis N, Catlow CRA, Sankar G, Thomas JM (2002) Phys Chem Chem Phys 4(7):1228–1240Google Scholar
  18. 18.
    Gawarecka A, Wróblewska A (2018) React Kinet Mech Cat 124(2):523–543Google Scholar
  19. 19.
    Xiao J, Wang X, Fujii M, Yang Q, Song C (2013) AlChE J 59(5):1441–1445Google Scholar
  20. 20.
    Zeng X, Xiao X, Li Y, Chen J, Wang H (2017) Appl Catal B 209:98–109Google Scholar
  21. 21.
    Shi Y, Liu G, Zhang B, Zhang X (2016) Green Chem 18(19):5273–5279Google Scholar
  22. 22.
    Chen S, Lu W, Yao Y, Chen H, Chen W (2014) React Kinet Mech Cat 111(2):535–547Google Scholar
  23. 23.
    Wei S, He H, Cheng Y, Yang C, Zeng G, Kang L, Qian H, Zhu C (2017) Fuel 200:11–21Google Scholar
  24. 24.
    Yang C, Zhao K, Cheng Y, Zeng G, Zhang M, Shao J, Lu L (2016) Sep Purif Technol 163:153–161Google Scholar
  25. 25.
    Long Z, Yang C, Zeng G, Peng L, Dai C, He H (2014) Fuel 130:19–24Google Scholar
  26. 26.
    Zhou X, Zhao C, Yang J, Zhang S (2007) Energy Fuels 21(1):7–10Google Scholar
  27. 27.
    Hulea V, Fajula F, Bousquet J (2001) J Catal 198:179–186Google Scholar
  28. 28.
    Wang Y, Li G, Wang X, Jin C (2007) Energy Fuels 21(3):1415–1419Google Scholar
  29. 29.
    Jin C, Li G, Wang X, Zhao L, Wang Y, Sun D (2008) Top Catal 49(1):118–124Google Scholar
  30. 30.
    Liu J, Ni X, Hu Y (2015) React Kinet Mech Cat 114(2):685–695Google Scholar
  31. 31.
    Leng K, Li X, Ye G, Du Y, Sun Y, Xu W (2016) Catal Sci Technol 6(20):7615–7622Google Scholar
  32. 32.
    And WL, Frei H (2002) J Am Chem Soc 124(31):9292Google Scholar
  33. 33.
    Song H-Y, Li G, Wang X-S, Xu Y-J (2010) Catal Today 149(1–2):127–131Google Scholar
  34. 34.
    Yang S-T, Jeong K-E, Jeong S-Y, Ahn W-S (2012) Mater Res Bull 47(12):4398–4402Google Scholar
  35. 35.
    Wang J, Zhang L, Sun Y, Jiang B, Chen Y, Gao X, Yang H (2018) Fuel Process Technol 177:81–88Google Scholar
  36. 36.
    Zheng D, Zhu W, Xun S, Zhou M, Zhang M, Jiang W, Qin Y, Li H (2015) Fuel 159(6):446–453Google Scholar
  37. 37.
    Xun S, Zhu W, Zheng D, Li H, Jiang W, Zhang M (2015) RSC Adv 5(54):43528–43536Google Scholar
  38. 38.
    Otsuki S, Nonaka T, Takashima N, Qian W, Ishihara A, Imai T, Kabe T (2000) Energy Fuels 14:1232–1239Google Scholar
  39. 39.
    Liu S, Zhao F, Sun H, Liu X, Cui B (2018) Appl Organomet Chem 32(2):e4082Google Scholar
  40. 40.
    Panyaburapa W, Nanok T, Limtrakul J (2007) J Phys Chem C 111(8):3433–3441Google Scholar
  41. 41.
    Wang H, Zhou R, Deng Y (2018) React Kinet Mech Cat 124(1):45–60Google Scholar
  42. 42.
    Wang H, Deng YQ, Zhou R (2018) Theor Chem Acc 137(5):66Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Xingqi Lin
    • 1
  • Xingye Zeng
    • 1
  • Rujin Zhou
    • 1
  • Hanlu Wang
    • 1
    Email author
  1. 1.College of Chemical EngineeringGuangdong University of Petrochemical TechnologyMaomingPeople’s Republic of China

Personalised recommendations