Catalytic peroxide fractionation processes for the green biorefinery of wood

  • B. N. KuznetsovEmail author
  • I. G. Sudakova
  • N. V. Garyntseva
  • A. A. Kondrasenko
  • A. V. Pestunov
  • L. Djakovitch
  • C. Pinel


A kinetic study and optimization of pine wood peroxide fractionation in the medium acetic acid–water over TiO2 catalyst were accomplished for the first time. Kinetic regularities and the product composition of green processes of catalytic peroxide fractionation of softwood (pine, abies, larch) and hardwood (aspen, birch) over 1 wt% TiO2 catalyst in the acetic acid–water medium were compared at the temperature range 70–100 °C. For all type of wood, the processes of peroxide delignification are described by the first order equations and their activation energies are varied at the range 76–94 kJ/mol. According to FTIR, XRD, SEM, NMR data, the cellulosic products of peroxide delignification have a structure similar to microcrystalline cellulose regardless of the nature of wood. Soluble products are presented by organic acid and monosaccharides. The scheme of green biorefinery of pine wood based on extractive-catalytic fractionation of wood biomass on microcrystalline cellulose, hemicelluloses, aromatic and aliphatic acids, monosaccharides, turpentine and rosin was developed. Green and non-toxic reagents and solid catalyst are used in the developed scheme of biorefinery.


Softwood Hardwood Peroxide fractionation Catalyst TiO2 Kinetics Optimization Green biorefinery 



This work is a part of GDRI “Biomass” between France and Russia.


  1. 1.
    Introduction to Chemicals from Biomass (2008) Wiley series in renewable resources. John Wiley & Sons, Ltd, ChichesterGoogle Scholar
  2. 2.
    Nelson V (2011) Introduction to renewable energy. Energy and the environment. CRS Press, LondonCrossRefGoogle Scholar
  3. 3.
    Fengel D, Wegener G (1984) Wood chemistry, ultrastracture, reactions. Walter de Gruter, BerlinGoogle Scholar
  4. 4.
    Gallezot P (2007) Catalytic routes from renewables to fine chemicals. Catal Today 121(1):76–91CrossRefGoogle Scholar
  5. 5.
    Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4(1):83–99CrossRefGoogle Scholar
  6. 6.
    Besson M, Gallezot P, Pinel C (2014) Conversion of biomass into chemicals over metal catalysts. Chem Rev 114(3):1827–1870CrossRefPubMedGoogle Scholar
  7. 7.
    Zakzeski J, Bruijnincx PCA, Jongerius AL, Weckhuysen BM (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110(6):3552–3599CrossRefPubMedGoogle Scholar
  8. 8.
    Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, Ree RV, Jong ED (2009) Toward a common classification approach for biorefinery systems. Biofuels Bioprod Biorefining 3(5):534–546CrossRefGoogle Scholar
  9. 9.
    de Long E, Hidson A, Walsh P (2013) Task 42. Biorefinery. In: Report IEA bioenergyGoogle Scholar
  10. 10.
    Tarabanko VE, Kaygorodov KL, Skiba EA, Tarabanko N, Chelbina YV, Baybakova OV, Kuznetsov BN, Djakovitch L (2017) Processing pine wood into vanillin and glucose by sequential catalytic oxidation and enzymatic hydrolysis. J Wood Chem Technol 37(1):43–51CrossRefGoogle Scholar
  11. 11.
    Van den Bosch S, Schutyser W, Vanholme R, Driessen T, Koelewijn SF, Renders T, De Meester B, Huijgen WJJ, Dehaen W, Courtin CM, Lagrain B, Boerjan W, Sels BF (2015) Reductive lignocellulose fractionation into soluble lignin-derived phenolic monomers and dimers and processable carbohydrate pulps. Energy Environ Sci 8(6):1748–1763CrossRefGoogle Scholar
  12. 12.
    Galkin MV, Samec JSM (2016) Lignin valorization through catalytic lignocellulose fractionation: a fundamental platform for the future biorefinery. ChemSusChem 9:1544–1558CrossRefPubMedGoogle Scholar
  13. 13.
    Anderson EM, Katahira R, Reed M, Resch MG, Karp EM, Beckham GT, Román-Leshkov Y (2016) Reductive catalytic fractionation of corn stover lignin. ACS Sustain Chem Eng 4(12):6940–6950CrossRefGoogle Scholar
  14. 14.
    Kuznetsov BN, Sudakova IG, Garyntseva NV, Djakovitch L, Pinel C (2017) Kinetic studies and optimization of abies wood fractionation by hydrogen peroxide under mild conditions with TiO2 catalyst. Reac Kinet Mech Cat 120(1):81–94CrossRefGoogle Scholar
  15. 15.
    Kuznetsov BN, Chesnokov NV, Yatsenkova OV, Sharypov VI, Garyntseva NV, Ivanchenko NM, Yakovlev VA (2017) Green catalytic valorization of hardwood biomass into valuable chemicals with the use of solid catalysts. Wood Sci Technol 51(5):1189–1208CrossRefGoogle Scholar
  16. 16.
    Kuznetsov BN, Sudakova IG, Garyntseva NV, Levdansky VA, Ivanchenko NM, Pestunov AV, Djakovitch L, Pinel C (2018) Green biorefinery of larch wood biomass to obtain the bioactive compounds, functional polymers and nanoporous materials. Wood Sci Technol 52(5):1377–1394CrossRefGoogle Scholar
  17. 17.
    Sjöström E, Alén R (1999) Analytical methods in wood chemistry, pulping and papermaking. Springer Series in Wood Science. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Trache D, Hussin MH, Hui Chuin CT, Sabar S, Fazita MRN, Taiwo OFA, Hassan TM, Haafiz MKM (2016) Microcrystalline cellulose: isolation, characterization and bio-composites application—a review. Int J Biol Macromol 93:789–804CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Suchy M, Argyropoulos D (2002) Catalysis and activation of oxygen and peroxide delignification of chemical pulps: a review. Tappi 1(2):1–18Google Scholar
  21. 21.
    Kuznetsov BN, Sudakova IG, Garyntseva NV, Djakovitch L, Pinel C (2013) Kinetic study of aspen-wood sawdust delignification by H2O2 with sulfuric acid catalyst under mild conditions. Reac Kinet Mech Cat 110(2):271–280CrossRefGoogle Scholar
  22. 22.
    Kuznetsov BN, Chesnokov NV, Garyntseva NV, Sudakova IG, Pestunov AV, D’yakovich L, Pinel’ K (2018) Kinetic study and optimization of catalytic peroxide delignification of aspen wood. Kinet Catal 59(1):48–57CrossRefGoogle Scholar
  23. 23.
    Kuznetsov BN, Chesnokov NV, Sudakova IG, Garyntseva NV, Kuznetsova SA, Malyar YN, Yakovlev VA, Djakovitch L (2018) Green catalytic processing of native and organosolv lignins. Catal Today 309:18–30CrossRefGoogle Scholar
  24. 24.
    Hu F, Jung S, Ragauskas A (2012) Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresour Technol 117:7–12CrossRefPubMedGoogle Scholar
  25. 25.
    Adel AM, Abd El-Wahab ZH, Ibrahim AA, Al-Shemy MT (2011) Characterization of microcrystalline cellulose prepared from lignocellulosic materials. Part II: physicochemical properties. Carbohydr Polym 83(2):676–687CrossRefGoogle Scholar
  26. 26.
    Fan M, Dai D, Huang B (2012) Fourier transform infrared spectroscopy for natural fibres. In: Salih S (ed) International conference on innovative technologies (IN-TECH 2012). Rejeka, Croatia, pp 45–68Google Scholar
  27. 27.
    Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRefPubMedGoogle Scholar
  28. 28.
    Vasiliu-Oprea C, Nicoleanu J (1993) Micronized (and microcrystalline) celluloses. Obtainment and fields of application. Polym Plast Technol Eng 32(3):181–214CrossRefGoogle Scholar
  29. 29.
    Wikberg H, Liisa Maunu S (2004) Characterisation of thermally modified hard- and softwoods by 13C CPMAS NMR. Carbohydr Polym 58(4):461–466CrossRefGoogle Scholar
  30. 30.
    Zuckerstatter G, Schild G, Wollboldt P, Roeder T, Weber HK, Sixta H (2009) The elucidation of cellulose supramolecular structure by 13C CP-MAS NMR. Lenzing Ber 87:38–46Google Scholar
  31. 31.
    Liu D, Chen EYX (2014) Integrated catalytic process for biomass conversion and upgrading to C12 furoin and alkane fuel. ACS Catal 4(5):1302–1310CrossRefGoogle Scholar
  32. 32.
    Schutyser W, Renders T, Van den Bosch S, Koelewijn SF, Beckham GT, Sels BF (2018) Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev 47(3):852–908CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J, Garcia-Negron V, Motagamwala AH, Mellmer MA, Huang K, Houtman CJ, Labbé N, Harper DP, Maravelias CT, Runge T, Dumesic JA (2017) Increasing the revenue from lignocellulosic biomass: maximizing feedstock utilization. Sci Adv 3(5):e1603301CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Silvestre AJ, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier, AmsterdamGoogle Scholar
  35. 35.
    Mercier B, Prost J, Prost M (2009) The essential oil of turpentine and its major volatile fraction (α- and β-pinenes): a review. Int J Occup Med Environ Health 22(4):331–342CrossRefPubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute of Chemistry and Chemical Technology SB RASFederal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
  2. 2.IRCELYONLyonFrance

Personalised recommendations