Stability issues of CO tolerant Pt-based electrocatalysts for polymer electrolyte membrane fuel cells: comparison of Pt/Ti0.8Mo0.2O2–C with PtRu/C

  • Ádám Vass
  • Irina BorbáthEmail author
  • István Bakos
  • Zoltán Pászti
  • György Sáfrán
  • András Tompos


The stability and CO tolerance of a self-made 20 wt% Pt/Ti0.8Mo0.2O2–C mixed oxide–carbon composite supported electrocatalyst was compared to those of a commercial state-of-the-art PtRu/C electrocatalyst by means of cyclic voltammetry and COads stripping voltammetry measurements. On the Pt/Ti0.8Mo0.2O2–C catalyst the oxidation of CO takes place at exceptionally low potential values (ECO,onset = 50 mV); the onset potential is shifted to less positive potentials by 150 mV compared to the PtRu/C catalyst. A stability test involving 500 polarization cycles revealed that the PtRu/C catalyst suffered more significant degradation than the composite supported Pt catalyst. XPS measurements indicated that the degradation is connected to ruthenium dissolution. At the same time, better electrocatalytic stability and increased CO tolerance of the Pt/Ti0.8Mo0.2O2–C electrocatalyst compared to the PtRu/C catalyst was evidenced.


Conducting Ti-based mixed oxides TiMoOx Composite materials Pt electrocatalysts PtRu/C CO-tolerance 



The research within Project No. VEKOP-2.3.2-16-2017-00013 was supported by the European Union and the State of Hungary, co-financed by the European Regional Development Fund. Financial support by the OTKA-project [Grant Number K112034 (István Bakos)] is greatly acknowledged.

Supplementary material

11144_2018_1512_MOESM1_ESM.docx (412 kb)
Supplementary material 1 (DOCX 412 kb)


  1. 1.
    Mathias MF, Makharia R, Gasteiger HA, Conley JJ, Fuller TJ, Gittleman CI, Kocha SS, Miller DP, Mittelsteadt CK, Xie T, Yan SG, Yu PT (2005) Two Fuel Cell cars in every garage? Electrochem Soc Interface 14:24–35Google Scholar
  2. 2.
    Elezović NR, Gajić-Krstajić LJM, Vračar LJM, Krstajić NV (2010) Effect of chemisorbed CO on MoOx-Pt/C electrode on the kinetics of hydrogen oxidation reaction. Int J Hydrogen Energy 35:12878–12887CrossRefGoogle Scholar
  3. 3.
    Santiago EI, Batista MS, Assaf EM, Ticianelli EA (2004) Mechanism of CO tolerance on molybdenum-based electrocatalysts for PEMFC. J Electrochem Soc 151(7):A944–A949CrossRefGoogle Scholar
  4. 4.
    Yan Z, Xie J, Jing J, Zhang M, Wei W, Yin S (2012) MoO2 nanocrystals down to 5 nm as Pt electrocatalyst promoter for stable oxygen reduction reaction. Int J Hydrogen Energy 37:15948–15955CrossRefGoogle Scholar
  5. 5.
    Martins PFBD, Ticianelli EA (2015) Electrocatalytic activity and stability of platinum nanoparticles supported on carbon-molybdenum oxides for the oxygen reduction reaction. Chemelectrochem 2(9):1298–1306CrossRefGoogle Scholar
  6. 6.
    Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12CrossRefGoogle Scholar
  7. 7.
    Pereira LGS, Paganin VA, Ticianelli EA (2009) Investigation of the CO tolerance mechanism at several Pt-based bimetallic anode electrocatalysts in a PEM fuel cell. Electrochim Acta 54:1992–1998CrossRefGoogle Scholar
  8. 8.
    Huang SY, Chang CM, Wang KW, Yeh CT (2007) Promotion of platinum-ruthenium catalyst for electrooxidation of methanol by crystalline ruthenium dioxide. ChemPhysChem 8:1774–1777CrossRefPubMedGoogle Scholar
  9. 9.
    Gasteiger HA, Markovic NM, Ross PN Jr (1995) H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J Phys Chem 99:8290–8301CrossRefGoogle Scholar
  10. 10.
    Ross PN Jr, Kinoshita K, Scarpellino AJ, Stonehart P (1975) Electrocatalysis on binary alloys. II. Oxidation of molecular hydrogen on supported Pt + Ru alloys. J Electroanal Chem 63:97–110CrossRefGoogle Scholar
  11. 11.
    Jones S, Trdsree K, Sawangphruk M, Foord JS, Thompsett D, Tsang SCE (2010) Promotion of direct methanol electro-oxidation by Ru terraces on Pt by using a reversed spillover mechanism. ChemCatChem 2:1089–1095CrossRefGoogle Scholar
  12. 12.
    Takasu Y, Kawaguchi T, Sugimoto W, Murakami Y (2003) Effects of the surface area of carbon support on the characteristics of highly-dispersed Pt-Ru particles as catalysts for methanol oxidation. Electrochim Acta 48:3861–3868CrossRefGoogle Scholar
  13. 13.
    Zhang Z, Liu J, Gu J, Su L, Cheng L (2014) An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ Sci 7:2535–2558CrossRefGoogle Scholar
  14. 14.
    Takabatake Y, Noda Z, Lyth SM, Hayashi A, Sasaki K (2014) Cycle durability of metal oxide supports for PEFC electrocatalysts. Int J Hydrogen Energy 39:5074–5082CrossRefGoogle Scholar
  15. 15.
    Ioroi T, Akita T, Yamazaki S, Siroma Z, Fujiwara N, Yasuda K (2006) Comparative study of carbon-supported Pt/Mo-oxide and PtRu for use as CO-tolerant anode catalysts. Electrochim Acta 52:491–498CrossRefGoogle Scholar
  16. 16.
    Elezović NR, Babić BM, Radmilović VR, Gojković SLJ, Krstajić NV, Vračar LJM (2008) Pt/C doped by MoOx as the electrocatalyst for oxygen reduction and methanol oxidation. J Power Sources 175:250–255CrossRefGoogle Scholar
  17. 17.
    Ordóñez LC, Roquero P, Sebastian PJ, Ramírez J (2007) CO oxidation on carbon-supported PtMo electrocatalysts: effect of the platinum particle size. Int J Hydrogen Energy 32:3147–3153CrossRefGoogle Scholar
  18. 18.
    Ioroi T, Yasuda K, Siroma Z, Fujiwara N, Miyazaki Y (2003) Enhanced CO-tolerance of carbon-supported platinum and molybdenum oxide anode catalyst. J Electrochem Soc 150:A1225–A1230CrossRefGoogle Scholar
  19. 19.
    Gurau B, Viswanathan R, Liu R, Lafrenz TJ, Ley KL, Smotkin ES, Reddington E, Sapienza A, Chan BC, Mallouk TE, Sarangapani S (1998) Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidation. J Phys Chem B 102:9997–10003CrossRefGoogle Scholar
  20. 20.
    Götz M, Wendt H (1998) Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas. Electrochim Acta 43:3637–3644CrossRefGoogle Scholar
  21. 21.
    Martínez-Huerta MV, Rodríguez JL, Tsiouvaras N, Pena MA, Fierro JLG, Pastor E (2008) Novel synthesis method of CO-tolerant PtRu-MoOx nanoparticles: structural characteristics and performance for methanol electrooxidation. Chem Mater 20:4249–4259CrossRefGoogle Scholar
  22. 22.
    Oliveira Neto A, Franco EG, Arico E, Linardi M, Gonzalez ER (2003) Electro-oxidation of methanol and ethanol on Pt-Ru/C and Pt-Ru-Mo/C electrocatalysts prepared by Bönnemann’s method. J Eur Ceram Soc 23:2987–2992CrossRefGoogle Scholar
  23. 23.
    Park KW, Choi JH, Ahn KS, Sung YE (2004) PtRu alloy and PtRu-WO3 nanocomposite electrodes for methanol electrooxidation fabricated by a sputtering deposition method. J Phys Chem B 108:5989–5994CrossRefGoogle Scholar
  24. 24.
    Tian JA, Sun GQ, Jiang LH, Yan SY, Mao Q, Xin Q (2007) Highly stable PtRuTiOx/C anode electrocatalyst for direct methanol fuel cells. Electrochem Commun 9:563–568CrossRefGoogle Scholar
  25. 25.
    Kim JH, Ishihara A, Mitsushima S, Kamiya N, Ota KI (2007) Catalytic activity of titanium oxide for oxygen reduction reaction as a non-platinum catalyst for PEFC. Electrochim Acta 52:2492–2497CrossRefGoogle Scholar
  26. 26.
    Lv Q, Yin M, Zhao X, Li C, Liu C, Xing W (2012) Promotion effect of TiO2 on catalytic activity and stability of Pt catalyst for electrooxidation of methanol. J Power Sources 218:93–99CrossRefGoogle Scholar
  27. 27.
    Vogel W, Timperman L, Alonso-Vante N (2010) Probing metal substrate interaction of Pt nanoparticles: structural XRD analysis and oxygen reduction reaction. Appl Catal A 377:167–173CrossRefGoogle Scholar
  28. 28.
    Liu X, Chen J, Liu G, Zhang L, Zhang H, Yi B (2010) Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts. J Power Sources 195:4098–4103CrossRefGoogle Scholar
  29. 29.
    von Kraemer S, Wikander K, Lindbergh G, Lundblad A, Palmqvist AEC (2008) Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell. J Power Sources 180:185–190CrossRefGoogle Scholar
  30. 30.
    Bauer A, Song C, Ignaszak A, Hui R, Zhang J, Chevallier L, Jones D, Roziére J (2010) Improved stability of mesoporous carbon fuel cell catalyst support through incorporation of TiO2. Electrochim Acta 55:8365–8370CrossRefGoogle Scholar
  31. 31.
    Mayrhofer KJJ, Hartl K, Juhart V, Arenz M (2009) Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. J Am Chem Soc 131:16348–16349CrossRefPubMedGoogle Scholar
  32. 32.
    Knights S, Bashyam R, He P, Lauritzen M, Startek C, Colbow V, Cheng TTH, Kolodziej J, Wessel S (2011) PEMFC MEA and system design considerations. ECS Trans 41(1):39–53CrossRefGoogle Scholar
  33. 33.
    He P, Cheng TTH, Bashyam R, Young AP, Knights S (2010) Relative humidity effect on anode durability in PEMFC startup/shutdown processes. ECS Trans 33(1):1273–1279CrossRefGoogle Scholar
  34. 34.
    Vass Á, Borbáth I, Pászti Z, Bakos I, Sajó IE, Németh P, Tompos A (2017) Effect of Mo incorporation on electrocatalytic performance of Ti-Mo mixed oxide-carbon composite supported Pt electrocatalysts. React Kinet Mech Cat 121:141–160CrossRefGoogle Scholar
  35. 35.
    Vass Á, Borbáth I, Bakos I, Pászti Z, Sajó IE, Tompos A (2018) Novel Pt electrocatalysts: multifunctional composite supports for enhanced corrosion resistance and improved CO tolerance. Top Catal 61:1300–1312CrossRefGoogle Scholar
  36. 36.
    Gubán D, Tompos A, Bakos I, Vass Á, Pászti Z, Szabó EGY, Sajó IE, Borbáth I (2017) Preparation of CO-tolerant anode electrocatalysts for polymer electrolyte membrane fuel cells. Int J Hydrogen Energy 42:13741–13753CrossRefGoogle Scholar
  37. 37.
    Bakos I, Borbáth I, Vass Á, Pászti Z, Tompos A (2018) Design and investigation of molybdenum modified platinum surfaces for modeling of CO tolerant electrocatalysts. Top Catal 61:1385–1395CrossRefGoogle Scholar
  38. 38.
    Fairley N (2006) CasaXPS: spectrum processing software for XPS, AES and SIMS. Version 2.3.13, Casa Software Ltd, Cheshire. Accessed Dec 2018
  39. 39.
    Mohai M (2004) XPS MultiQuant: multimodel XPS Quantification Software. Surf Interface Anal 36(8):828–832CrossRefGoogle Scholar
  40. 40.
    Mohai M (2011) XPS MultiQuant: multi-model X-ray photoelectron spectroscopy quantification program. Version 7(00):92Google Scholar
  41. 41.
    Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble JR Jr (2003) NIST X-ray photoelectron spectroscopy database. Version 3.4. National Institute of Standards and Technology, Gaithersburg, MDGoogle Scholar
  42. 42.
    Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corp, Eden Prairie, MNGoogle Scholar
  43. 43.
    Hu JE, Liu Z, Eichhorn BW, Jackson GS (2012) CO tolerance of nano-architectured Pt-Mo anode electrocatalysts for PEM fuel cells. Int J Hydrogen Energy 37:11268–11275CrossRefGoogle Scholar
  44. 44.
    Justin P, Rao GR (2011) Methanol oxidation on MoO3 promoted Pt/C electrocatalyst. Int J Hydrogen Energy 36:5875–5884CrossRefGoogle Scholar
  45. 45.
    Guillén-Villafuerte O, García G, Rodríguez JL, Pastor E, Guil-López R, Nieto E, Fierro JLG (2013) Preliminary studies of the electrochemical performance of Pt/X@MoO3/C (X = Mo2C, MoO2, Mo0) catalysts for the anode of a DMFC: influence of the Pt loading and Mo-phase. Int J Hydrogen Energy 38:7811–7821CrossRefGoogle Scholar
  46. 46.
    Godoi DRM, Perez J, Villullas HM (2009) Effects of alloyed and oxide phases on methanol oxidation of Pt-Ru/C nanocatalysts of the same particle size. J Phys Chem C 113:8518–8525CrossRefGoogle Scholar
  47. 47.
    Iwasita T, Hoster H, John-Anacker A, Lin W, Vielstich W (2000) Methanol oxidation on PtRu electrodes. Influence of surface structure and Pt-Ru atom distribution. Langmuir 16:522–529CrossRefGoogle Scholar
  48. 48.
    Trasatti S, Buzzanca G (1971) Ruthenium dioxide: A new interesting electrode material. Solid state structure and electrochemical behaviour. J Electroanal Chem 29(2):A1–A5CrossRefGoogle Scholar
  49. 49.
    Lin WF, Zei MS, Eiswirth M, Ertl G, Iwasita T, Vielstich W (1999) Electrocatalytic activity of Ru-modified Pt(111) electrodes toward CO oxidation. J Phys Chem B 103:6968–6977CrossRefGoogle Scholar
  50. 50.
    Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms. Part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60:267–273CrossRefGoogle Scholar
  51. 51.
    Chrzanowski W, Wieckowski A (1997) Ultrathin films of ruthenium on low index platinum single crystal surfaces: an electrochemical study. Langmuir 13:5974–5978CrossRefGoogle Scholar
  52. 52.
    Szabó S, Bakos I (1987) Investigation of ruthenium deposition onto a platinized platinum electrode in sulfuric acid media. J Electroanal Chem 230:233–240CrossRefGoogle Scholar
  53. 53.
    Szabó S, Bakos I, Nagy F (1989) Investigation of ruthenium deposition onto a platinum electrode in hydrochloric acid media. J Electroanal Chem 271:269–277CrossRefGoogle Scholar
  54. 54.
    Micoud F, Maillard F, Gourgaud A, Chatenet M (2009) Unique CO-tolerance of Pt-WOx materials. Electrochem Commun 11:651–654CrossRefGoogle Scholar
  55. 55.
    Wang D, Subban CV, Wang H, Rus E, DiSalvo FJ, Abruña HD (2010) Highly stable and CO-Tolerant Pt/Ti0.7W0.3O2 electrocatalyst for proton-exchange membrane fuel cells. J Am Chem Soc 132:10218–10220CrossRefPubMedGoogle Scholar
  56. 56.
    Samjeske G, Wang H, Löffler T, Baltruschat H (2002) CO and methanol oxidation at Pt-electrodes modified by Mo. Electrochim Acta 47:3681–3692CrossRefGoogle Scholar
  57. 57.
    Esfahani RAM, Vankova SK, Monteverde Videla AHA, Specchia S (2017) Innovative carbon-free low content Pt catalyst supported on Mo-doped titanium suboxide (Ti3O5-Mo) for stable and durable oxygen reduction reaction. Appl Catal B-Environ 201:419–429CrossRefGoogle Scholar
  58. 58.
    Wiltshire RJK, King CR, Rose A, Wells PP, Davies H, Hogarth MP, Thompsett D, Theobald B, Mosselmans FW, Roberts M, Russell AE (2009) Effects of composition on structure and activity of PtRu/C catalysts. Phys Chem Chem Phys 11:2305–2313CrossRefPubMedGoogle Scholar
  59. 59.
    Gasteiger HA, Markovic N, Ross PN Jr, Cairns EJ (1994) CO electrooxidation on well-characterized Pt-Ru alloys. J Phys Chem 98:617–625CrossRefGoogle Scholar
  60. 60.
    Guo JW, Zhao TS, Prabhuram J, Chen R, Wong CW (2005) Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells. Electrochim Acta 51:754–763CrossRefGoogle Scholar
  61. 61.
    Dinh HY, Ren X, Garzon FH, Zelenay P, Gottesfeld S (2000) Electrocatalysis in direct methanol fuel cells: in situ probing of PtRu anode catalyst surfaces. J Electroanal Chem 491:222–233CrossRefGoogle Scholar
  62. 62.
    Wang H, Chen S, Wang C, Zhang K, Liu D, Haleem YA, Zheng X, Ge B, Song L (2016) Role of Ru oxidation degree for catalytic activity in bimetallic Pt/Ru nanoparticles. J Phys Chem C 210:6569–6576CrossRefGoogle Scholar
  63. 63.
    Sen S, Sen F, Gökagac G (2011) Preparation and characterization of nano-sized Pt-Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation. Phys Chem Chem Phys 13:6784–6792CrossRefPubMedGoogle Scholar
  64. 64.
    Micoud F, Maillard F, Bonnefont A, Job N, Chatenet M (2010) The role of the support in COads monolayer electrooxidation on Pt nanoparticles: pt/WOx vs. Pt/C. Phys Chem Chem Phys 12:1182–1193CrossRefPubMedGoogle Scholar
  65. 65.
    Jusys Z, Kaiser J, Behm RJ (2001) Electrooxidation of CO and H2/CO mixtures on a carbon-supported Pt catalyst-a kinetic and mechanistic study by differential electrochemical mass spectrometry. Phys Chem Chem Phys 3:4650–4660CrossRefGoogle Scholar
  66. 66.
    Rolison DR, Pl Hagans, Swider KE, Long JW (1999) Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity. Langmuir 15:774–779CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Ádám Vass
    • 1
  • Irina Borbáth
    • 1
    • 3
    Email author
  • István Bakos
    • 1
  • Zoltán Pászti
    • 1
  • György Sáfrán
    • 2
  • András Tompos
    • 1
  1. 1.Institute of Materials and Environmental Chemistry, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  2. 2.Institute for Technical Physics and Materials Science, Centre for Energy ResearchHungarian Academy of SciencesBudapestHungary
  3. 3.BudapestHungary

Personalised recommendations