Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 2, pp 811–827 | Cite as

Aqueous-phase hydrogenation of furfural over supported palladium catalysts: effect of the support on the reaction routes

  • Roman M. MironenkoEmail author
  • Valentin P. Talsi
  • Tatiana I. Gulyaeva
  • Mikhail V. Trenikhin
  • Olga B. Belskaya
Article
  • 141 Downloads

Abstract

The effect of the support nature (different carbons, aluminum oxide, mixed MgAl oxide) on the activity of palladium catalysts and on the reaction routes of aqueous-phase hydrogenation of furfural at a temperature of 423 K and a pressure of 3 MPa was investigated. The carbon-supported catalysts were found to be the most active, and almost complete conversion of furfural is achieved. In the presence of these catalysts, the reaction proceeds predominantly through two parallel water-involved routes depending on the nature of carbon support: catalysts supported on carbon nanoglobules are selective to 4-oxopentanal (selectivity up to about 63%), while catalysts supported on carbon nanotubes give mainly cyclopentanone (selectivity up to 57%). The palladium catalysts based on the oxide supports (γ-Al2O3, MgAlOx) are much less active in the aqueous-phase hydrogenation of furfural compared to carbon-supported catalysts, and complete conversion of furfural does not occur (only up to 55%). In the presence of catalysts prepared using basic support (i.e., MgAl oxide), there are no reactions involving water, and furfuryl alcohol and tetrahydrofurfuryl alcohol are the principal products. According to the results of catalyst characterizations, the revealed differences in performance of palladium catalysts are caused by the effect of the support nature on the formation and dispersion of supported Pd nanoparticles, as well as by the distinctions in the structure and acid–base properties of the supports.

Keywords

Palladium catalysts Support effect Aqueous-phase hydrogenation Furfural 

Notes

Acknowledgements

The authors thank Dr. Liudmila Stepanova and Olga Maevskaya for participation in the preparation of catalysts and in the potentiometric measurements, Dr. Rinat Izmailov for the analysis of the synthesized samples by ICP-AES, Sergey Evdokimov for his help with NMR measurements, and Dr. Alexey Arbuzov for providing the FTIR spectra of the supports. Besides, the authors are grateful to Dr. Vyacheslav Yurpalov for useful discussion of the catalytic results. Characterization of catalysts and identification of reaction products were performed using equipment of the Omsk Regional Center of Collective Usage, Siberian Branch of the Russian Academy of Sciences.

The work was supported by the Ministry of Science and Higher Education of the Russian Federation in accordance with the Fundamental Research Program of State Academies of Sciences for 2013‒2020, Subject V.47, Project No. V.47.1.3 (state Registration Number in the EGISU NIOKTR System: AAAA-A17-117021450099-9).

Supplementary material

11144_2018_1505_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1591 kb)

References

  1. 1.
    Alonso DM, Marcotullio G (2018) In: López Granados M, Alonso DM (eds) Furfural: an entry point of lignocellulose in biorefineries to produce renewable chemicals, polymers, and biofuels. World Scientific, HackensackGoogle Scholar
  2. 2.
    Dias AS, Lima S, Pillinger M, Valente AA (2010) In: Pignataro B (ed) Ideas in chemistry and molecular sciences: advances in synthetic chemistry. Wiley, WeinheimGoogle Scholar
  3. 3.
    Cai CM, Zhang T, Kumar R, Wyman CE (2014) J Chem Technol Biotechnol 89:2–10CrossRefGoogle Scholar
  4. 4.
    Dutta S, De S, Saha B, Alam MI (2012) Catal Sci Technol 2:2025–2036CrossRefGoogle Scholar
  5. 5.
    Yan K, Wu G, Lafleur T, Jarvis C (2014) Renew Sustain Energy Rev 38:663–676CrossRefGoogle Scholar
  6. 6.
    Machado G, Leon S, Santos F, Lourega R, Dullius J, Mollmann ME, Eichler P (2016) Nat Resour 7:115–129Google Scholar
  7. 7.
    Sokoto AM, Muduru IK, Dangoggo SM, Anka NU, Hassan LG (2018) Energy Sources A 40:120–124CrossRefGoogle Scholar
  8. 8.
    Lange J-P, van der Heide E, van Buijtenen J, Price R (2012) ChemSusChem 5:150–166CrossRefGoogle Scholar
  9. 9.
    Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I, López Granados M (2016) Energy Environ Sci 9:1144–1189CrossRefGoogle Scholar
  10. 10.
    Li X, Jia P, Wang T (2016) ACS Catal 6:7621–7640CrossRefGoogle Scholar
  11. 11.
    Hronec M, Fulajtarová K (2012) Catal Commun 24:100–104CrossRefGoogle Scholar
  12. 12.
    Hronec M, Fulajtárová K, Vávra I, Soták T, Dobročka E, Mičušík M (2016) Appl Catal B 181:210–219CrossRefGoogle Scholar
  13. 13.
    Mironenko RM, Belskaya OB, Lavrenov AV, Likholobov VA (2017) Russ Chem Bull Int Ed 66:673–676CrossRefGoogle Scholar
  14. 14.
    Mironenko RM, Belskaya OB, Lavrenov AV, Likholobov VA (2018) Kinet Catal 59:339–346CrossRefGoogle Scholar
  15. 15.
    Li H, Zhao W, Saravanamurugan S, Dai W, He J, Meier S, Yang S, Riisager A (2018) Commun Chem 1:32CrossRefGoogle Scholar
  16. 16.
    Liu X, Zhang B, Fei B, Chen X, Zhang J, Mu X (2017) Faraday Discuss 202:79–98CrossRefGoogle Scholar
  17. 17.
    Liu Y, Chen Z, Wang X, Liang Y, Yang X, Wang Z (2017) ACS Sustain Chem Eng 5:744–751CrossRefGoogle Scholar
  18. 18.
    Liu F, Liu Q, Xu J, Li L, Cui Y-T, Lang R, Li L, Su Y, Miao S, Sun H, Qiao B, Wang A, Jérôme F, Zhang T (2018) Green Chem 20:1770–1776CrossRefGoogle Scholar
  19. 19.
    Zhou M, Zhu H, Niu L, Xiao G, Xiao R (2014) Catal Lett 144:235–241CrossRefGoogle Scholar
  20. 20.
    Li Y, Guo X, Liu D, Mu X, Chen X, Shi Y (2018) Catalysts 8:193CrossRefGoogle Scholar
  21. 21.
    Wang Y, Zhou M, Wang T, Xiao G (2015) Catal Lett 145:1557–1565CrossRefGoogle Scholar
  22. 22.
    Zhou M, Li J, Wang K, Xia H, Xu J, Jiang J (2017) Fuel 202:1–11CrossRefGoogle Scholar
  23. 23.
    Ma Y-F, Wang H, Xu G-Y, Liu X-H, Zhang Y, Fu Y (2017) Chin Chem Lett 28:1153–1158CrossRefGoogle Scholar
  24. 24.
    Ohyama J, Satsuma A (2017) In: Fang Z, Smith RL, Li H (eds) Production of biofuels and chemicals with bifunctional catalysts. Springer Nature, SingaporeGoogle Scholar
  25. 25.
    Song S, Wu G, Guan N, Li L (2017) In: Fang Z, Smith RL, Li H (eds) Production of biofuels and chemicals with bifunctional catalysts. Springer Nature, SingaporeGoogle Scholar
  26. 26.
    Mironenko RM, Belskaya OB, Gulyaeva TI, Trenikhin MV, Likholobov VA (2018) Catal Commun 114:46–50CrossRefGoogle Scholar
  27. 27.
    Mironenko RM, Belskaya OB, Gulyaeva TI, Nizovskii AI, Kalinkin AV, Bukhtiyarov VI, Lavrenov AV, Likholobov VA (2015) Catal Today 249:145–152CrossRefGoogle Scholar
  28. 28.
    Stepanova LN, Belskaya OB, Salanov AN, Serkova AN, Likholobov VA (2018) Appl Clay Sci 157:267–273CrossRefGoogle Scholar
  29. 29.
    Park J, Regalbuto JR (1995) J Colloid Interface Sci 175:239–252CrossRefGoogle Scholar
  30. 30.
    Zhang H-L, Morse DE (2012) J Mater Res 27:410–416CrossRefGoogle Scholar
  31. 31.
    Eschemann TO, Lamme WS, Manchester RL, Parmentier TE, Cognigni A, Rønning M, de Jong KP (2015) J Catal 328:130–138CrossRefGoogle Scholar
  32. 32.
    Voll M, Kleinschmit P (2012) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, WeinheimGoogle Scholar
  33. 33.
    Mironenko RM, Belskaya OB, Talsi VP, Gulyaeva TI, Kazakov MO, Nizovskii AI, Kalinkin AV, Bukhtiyarov VI, Lavrenov AV, Likholobov VA (2014) Appl Catal 469:472–482CrossRefGoogle Scholar
  34. 34.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquérol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  35. 35.
    Serp P, Machado B (2015) Nanostructured carbon materials for catalysis. The Royal Society of Chemistry, CambridgeGoogle Scholar
  36. 36.
    Toebes ML, van Dillen JA, de Jong KP (2001) J Mol Catal A 173:75–98CrossRefGoogle Scholar
  37. 37.
    Frusteri F, Arena F, Parmaliana A, Mondello N, Giordano N (1993) React Kinet Catal Lett 51:331–342CrossRefGoogle Scholar
  38. 38.
    Lycourghiotis A (2009) In: de Jong KP (ed) Synthesis of solid catalysts. Wiley, WeinheimGoogle Scholar
  39. 39.
    Marceau E, Carrier X, Che M (2009) In: de Jong KP (ed) Synthesis of solid catalysts. Wiley, WeinheimGoogle Scholar
  40. 40.
    Ota A, Kunkes EL, Kasatkin I, Groppo E, Ferri D, Poceiro B, Navarro Yerga RM, Behrens M (2012) J Catal 293:27–38CrossRefGoogle Scholar
  41. 41.
    Naresh D, Kumar VP, Harisekhar M, Nagaraju N, Putrakumar B, Chary KVR (2014) Appl Surf Sci 314:199–207CrossRefGoogle Scholar
  42. 42.
    Hronec M, Fulajtarová K, Liptaj T (2012) Appl Catal A 437–438:104–111CrossRefGoogle Scholar
  43. 43.
    Yang Y, Du Z, Huang Y, Lu F, Wang F, Gao J, Xu J (2013) Green Chem 15:1932–1940CrossRefGoogle Scholar
  44. 44.
    Ordomsky VV, Schouten JC, van der Schaaf J, Nijhuis TA (2013) Appl Catal A 451:6–13CrossRefGoogle Scholar
  45. 45.
    Piancatelli G, Scettri A, Barbadoro S (1976) Tetrahedron Lett 17:3555–3558CrossRefGoogle Scholar
  46. 46.
    Piutti C, Quartieri F (2013) Molecules 18:12290–12312CrossRefGoogle Scholar
  47. 47.
    Antunes MM, Lima S, Fernandes A, Ribeiro MF, Chadwick D, Hellgardt K, Pillinger M, Valente AA (2018) Appl Catal B 237:521–537CrossRefGoogle Scholar
  48. 48.
    Aelterman W, De Kimpe N, Kalinin V (1997) J Nat Prod 60:385–386CrossRefGoogle Scholar
  49. 49.
    Liu S, Amada Y, Tamura M, Nakagawa Y, Tomishige K (2014) Catal Sci Technol 4:2535–2549CrossRefGoogle Scholar
  50. 50.
    Jackson MA, Blackburn JA, Price NPJ, Vermillion KE, Peterson SC, Ferrence GM (2016) Carbohydr Res 432:9–16CrossRefGoogle Scholar
  51. 51.
    Horvat J, Klaić B, Metelko B, Šunjić V (1985) Tetrahedron Lett 26:2111–2114CrossRefGoogle Scholar
  52. 52.
    Kim T, Assary RS, Marshall CL, Gosztola DJ, Curtiss LA, Stair PC (2011) ChemCatChem 3:1451–1458CrossRefGoogle Scholar
  53. 53.
    Stakheev AYu, Kustov LM (1999) Appl Catal A 188:3–35CrossRefGoogle Scholar
  54. 54.
    van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis. Wiley, WeinheimCrossRefGoogle Scholar
  55. 55.
    Kizhakevariam N, Stuve EM (1992) Surf Sci 275:223–236CrossRefGoogle Scholar
  56. 56.
    Stakheev AY, Mashkovskii IS, Baeva GN, Telegina NA (2010) Russ J Gen Chem 80:618–629CrossRefGoogle Scholar
  57. 57.
    Ravenelle RM, Copeland JR, Kim W-G, Crittenden JC, Sievers C (2011) ACS Catal 1:552–561CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Institute of Hydrocarbons ProcessingSiberian Branch of the Russian Academy of SciencesOmskRussia

Personalised recommendations