Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 2, pp 829–839 | Cite as

Hydrogenation of hydroxy-substituted naphthalenes using Ru and Ni catalysts to desired decalols and decalindiols

  • Iva PaterovaEmail author
  • Alexander Berezovskiy
  • Eliska Vyskocilova
  • Libor Cerveny
Article
  • 32 Downloads

Abstract

The hydrogenation of mono or dihydroxynaphthalenes related to the position of hydroxyl groups was compared by terms of the reaction rate and the relative concentration of desired decalols resp. decalindiols in the reaction mixture under chosen reaction conditions (170 °C, 14 MPa) and using Ra–Ni catalyst with Cr promotor or 5% Ru/C catalyst. The amount of undesired hydrogenolytic products increased in the rows 2- < 1-naphthol and 1,8- < 2,7- < 2,6- < 1,5-dihydroxynaphthalene. The selective formation of decalin-1,5-diol in the concentration higher than 1% at the total conversion was not observed. Under suitable reaction conditions at the total conversion of starting substituted naphthalene, the highest achieved relative concentration of decalin-1,8-diol approximately 69% and 89% using Ru/C catalyst (Ru paste type 605) and Ra–Ni Acticat 1600 catalysts was achieved.

Keywords

Ru catalyst Ni catalyst Hydrogenation Monohydroxynaphthalene Dihydroxynaphthalene Decalol Decalindiol 

Notes

Acknowledgements

This work was realized within the Operational Programme Prague—Competitiveness (CZ.2.16/3.1.00/24501) and “National Program of Sustainability” (NPU I LO1613) MSMT-43760/2015.

References

  1. 1.
    Arctander S (1969) Perfume and flavor chemicals (aroma Chemicals). Allured Publishing Corporation, MontclairGoogle Scholar
  2. 2.
    Minne GB, De Clercq PJ (2007) Molecules 12(2):183–187CrossRefGoogle Scholar
  3. 3.
    Zalomaeva OV, Ivanchikova ID, Kholdeeva OA, Sorokin AB (2008) Ross Khim Zh 52(1):57–66Google Scholar
  4. 4.
    Mcmanuc SP, Kozlowsi A, Hutchinson TL, Bray B, Shen X (2005) WO2005056636Google Scholar
  5. 5.
    Sugimori S, Kato T, Yamada K, Tabata T (1995) JP07018067Google Scholar
  6. 6.
    Vitolo MJ, Marquez VE (1978) J Med Chem 78:692–694CrossRefGoogle Scholar
  7. 7.
    Johnson WS, Banerjee DK, Schneider WP, Gutsche CD (1950) J Am Chem Soc 72:1426–1427CrossRefGoogle Scholar
  8. 8.
    Johnson WS, Szmuszkovicz J, Miller M (1950) J Am Chem Soc 72:3726–3731CrossRefGoogle Scholar
  9. 9.
    Rios-Santamarina I, Garcia-Domenech R, Galvez J, Morcillo Esteban J, Santamaria P, Cortijo J (2004) Eur J Pharm Sci 22:271–277CrossRefGoogle Scholar
  10. 10.
    Maegawa T, Akashi A, Yaguchi K, Iwasaki Y, Shigetsura M, Monguchi Y, Sajiki H (2009) Chem-Eur J 15(28):6953–6963CrossRefGoogle Scholar
  11. 11.
    Nishimura S, Ohbuchi S, Ikeno K, Okada Y (1984) Bull Chem Soc Jpn 57:2557–2564CrossRefGoogle Scholar
  12. 12.
    Müsser DM, Adkins H (1938) J Am Chem Soc 60:664–669CrossRefGoogle Scholar
  13. 13.
    Solladié-Cavallo A, Ahmed B, Schmitt M, Garin F (2005) C R Chim 8(11–12):1975–1980CrossRefGoogle Scholar
  14. 14.
    Katsuhiko T, Hiroshi K, Sadao T, Yutak N (2001) JP2001278823Google Scholar
  15. 15.
    Anderson AG Jr, Barlow DO (1955) J Am Chem Soc 77(19):5165–5166CrossRefGoogle Scholar
  16. 16.
    Hudson JF, Robinson R (1942) J Chem Soc 691–693Google Scholar
  17. 17.
    Johnson WS, Gutsche CD, Banerjee DK (1951) J Am Chem Soc 73:5464–5465CrossRefGoogle Scholar
  18. 18.
    Bilkova D, Jansa P, Paterova I, Cerveny L (2015) Chin J Catal 36(7):957–960CrossRefGoogle Scholar
  19. 19.
    Slavik J, Vyskocilova E, Paterova I, Cerveny L (2015) Perfum Flavor 40:38–41Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Iva Paterova
    • 1
    Email author
  • Alexander Berezovskiy
    • 1
  • Eliska Vyskocilova
    • 1
  • Libor Cerveny
    • 1
  1. 1.Department of Organic TechnologyUCT PraguePragueCzech Republic

Personalised recommendations