Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 2, pp 869–878 | Cite as

Methyltrioxorhenium as a Lewis Acid in the Prins Cyclization of Benzaldehyde and Isoprenol

  • Lada Sekerová
  • Hana Černá
  • Eliška VyskočilováEmail author
  • Libor Červený


Methyltrioxorhenium (MTO) as a Lewis acid was used in the acid catalyzed reaction of benzaldehyde and isoprenol leading to the formation of 4-methyl-2-phenyl-tetrahydro-2H-pyran-4-ol. The influence of reaction conditions on the reaction course was investigated. Under optimal reaction conditions (70 °C, a molar ratio of reactants 1:1, 1 wt% of MTO, no solvent, 100 mol% of water) the selectivity to desired product was 76%. The addition of water to the reaction mixture evoked the decrease of the reaction rate and slight increase of selectivity (without water addition the selectivity was approximately 70%). The typical composition of isomers of the desired product was cis:trans = 30:70. The mechanism of Prins cyclization using methyltrioxorhenium as the catalyst was offered. This mechanism explains the low concentration of intermediate hemiacetal in the reaction mixture using MTO as the catalyst. MTO was also heterogenized on silica, alumosilicate and alumina support. Characterization confirmed the successful attachment and homogeneous distribution of MTO on the supports, but kinetic measurement showed high leaching of MTO from pure silica and aluminosilicate support. MTO/alumina was reused with a low decrease of conversion.


Methyltrioxorhenium Prins cyclization Benzaldehyde Isoprenol Lewis acid 



This work was realized within the Operational Programme Prague—Competitiveness (CZ.2.16/3.1.00/24501) and “National Program of Sustainability“(NPU I LO1613) MSMT- 43760/2015. We also acknowledge the support from Specific University Research (MSMT NO 21-SVV/2018). Autors thank Eva Vrbková for performing reuse experiment and Jiří Krupka for TPD measurement.

Supplementary material

11144_2018_1503_MOESM1_ESM.docx (568 kb)
Supplementary material 1 (DOCX 567 kb)


  1. 1.
    Beattie IR, Jones PJ (1979) Inorg Chem 18:2318–2319CrossRefGoogle Scholar
  2. 2.
    Herrmann WA, Kratzer RM, Fischer RW (1997) Angew Chem Int Ed Engl 23:2652–2654CrossRefGoogle Scholar
  3. 3.
    Kühn FE, Fischer RW, Hermann WA (1999) Chem unserer Zeit 4:192–198CrossRefGoogle Scholar
  4. 4.
    Yin G, Busch DH (2009) Catal Lett 130:52–55CrossRefGoogle Scholar
  5. 5.
    Zdeňková R, Leitmannová-Vyskočilová E, Červený L (2012) Chem Listy 106:1042–1048Google Scholar
  6. 6.
    Zhu Z, Espenson JH (1997) J Am Chem Soc 119:3507–3512CrossRefGoogle Scholar
  7. 7.
    Stekrova M, Matouskova M, Vyskocilova E, Cerveny L (2015) Res Chem Intermed 41:9003–9013CrossRefGoogle Scholar
  8. 8.
    Wang WD, Espenson JH (1998) J Am Chem Soc 120:11335–11341CrossRefGoogle Scholar
  9. 9.
    Nabavizadeh SM, Rashidi M (2006) J Am Chem Soc 128:351–357CrossRefGoogle Scholar
  10. 10.
    Stekrova M, Zdenkova R, Vesely M, Vyskocilova E, Cerveny L (2014) Materials 7:2650–2668CrossRefGoogle Scholar
  11. 11.
    Vyskocilova E, Rezkova L, Vrbkova E, Paterova I, Cerveny L (2016) Res Chem Intermed 42:725–733CrossRefGoogle Scholar
  12. 12.
    Li G, Gu Y, Ding Y, Yong Z, Hanpeng W, Jianming G, Qiang Y, Liang SL (2004) J Mol Catal A 218:147–152CrossRefGoogle Scholar
  13. 13.
    Yadav JS, Reddy BVS, Kumar NGGKS, Aravind S (2008) Synthesis 3:395–400CrossRefGoogle Scholar
  14. 14.
    Yadav JS, Reddy BVS, Chaya DN, Kumar NGGK, Naresh P, Jagadeesh B (2009) Tetrahedron Lett 50:1799–1802CrossRefGoogle Scholar
  15. 15.
    More GP, Rane M, Bhat SV (2012) Green Chem Lett Rev 5:13–17CrossRefGoogle Scholar
  16. 16.
    Vyskočilová E, Krátká M, Veselý M, Vrbková E, Červený L (2016) Res Chem Intermed 42(9):6991–7003CrossRefGoogle Scholar
  17. 17.
    Vyskočilová E, Sekerová L, Paterová I, Krupka J, Veselý M, Červený L (2018) J Porous Mater 25:273–281CrossRefGoogle Scholar
  18. 18.
    Sekerová L, Vyskočilová E, Červený L (2017) React Kinet Mech Cat 121(1):83–95CrossRefGoogle Scholar
  19. 19.
    Vyskočilová E, Gruberová A, Shamzhy M, Vrbková E, Krupka J, Červený L (2018) React Kinet Mech Cat 124(2):711–725CrossRefGoogle Scholar
  20. 20.
    Damera K, Yu B, Wang B (2015) J Org Chem 80:5457–5463CrossRefGoogle Scholar
  21. 21.
    Ghosh AK, Tomaine AJ, Cantwell KE (2017) Synthesis 49:4229–4246CrossRefGoogle Scholar
  22. 22.
    Breugst M, Grée R, Houk KN (2013) J Org Chem 78:9892–9897CrossRefGoogle Scholar
  23. 23.
    Vyskočilová E, Krátká M, Červený L (2015), 3rd International Conference on Chemical Technology, Česká společnost průmyslové chemie, 27–30Google Scholar
  24. 24.
    Sekerová L, Vyskočilová E, Fantova JS, Paterová I, Krupka J, Červený L (2017) Res Chem Intermed 43(8):4943–4958CrossRefGoogle Scholar
  25. 25.
    Tadpetch K, Rychnovsky S (2008) Org Lett 10:4839–4842CrossRefGoogle Scholar
  26. 26.
    Gisdakis P, Antonczak S, Köstlmeier S, Hermann WA, Rösch N (1998) Angew Chem Int Ed 37(16):2211–2214CrossRefGoogle Scholar
  27. 27.
    Kuznetsov ML, Pombeiro AJL (2009) Inorg Chem 48:307–318CrossRefGoogle Scholar
  28. 28.
    Herrmann WA, Kühn FE, Fischer RW, Thiel WR, Romao CC (1992) Inorg Chem 31:4431–4432CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Lada Sekerová
    • 1
  • Hana Černá
    • 1
  • Eliška Vyskočilová
    • 1
    Email author
  • Libor Červený
    • 1
  1. 1.Department of Organic TechnologyUniversity of Chemistry and TechnologyPragueCzech Republic

Personalised recommendations