Advertisement

A novel supported quaternary NiCuMgFe/Al2O3 catalyst for the synthesis of alkyl tertiary amines

  • Tao Zhou
  • Anqi Dai
  • Mingxi Pan
  • Jiangrong Kong
  • Yonghua Zhou
Article
  • 20 Downloads

Abstract

The catalytic amination of aliphatic alcohols to manufacture alkyl tertiary amines is a promising process. In this paper, novel types of quaternary NiCuMgFe/Al2O3 and NiCuZnFe/Al2O3 catalysts were prepared via co-precipitation method and the performances were contrasted in details. With the optimum molar ratio nNi:nCu:nMg:nFe = 1.25:1:0.3:0.6, NiCuMgFe/Al2O3 catalyst delivered a N-propyldioctylamine (NPDA) yield of 94.3% and good recycling stability. In addition, NiCuMgFe/Al2O3 catalyst displayed the universality for several other types of alkyl tertiary amines. The characterizations of XRD, Raman, UV–vis-DR, XPS and H2-TPR revealed that obvious synergistic effect between the promoters Mg and Fe occurred, and they significantly improved both the percentage of Cu0 species and the dispersion of NiO active sites. As a result, the hydrogenation and dehydrogenation abilities of NiCuMgFe/Al2O3 catalyst were balanced towards a high conversion of alcohol and a high selectivity to tertiary amines.

Keywords

Alkyl-tertiary-amine Catalyst NiCuMgFe Co-precipitation Cu0 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21676303, 21506259) and the Project supported by the Hunan Provincial Science and Technology Plan, China (No. 2016TP1007).

References

  1. 1.
    Li Y, Li Q, Zhi L, Zhang M (2011) Catal Lett 141:1635–1642CrossRefGoogle Scholar
  2. 2.
    Rucker RP, Whittaker AM, Dang H, Lalic G (2012) J Am Chem Soc 134:6571–6574CrossRefGoogle Scholar
  3. 3.
    Kimura H (2011) Catal Rev-Sci Eng 53:1–90CrossRefGoogle Scholar
  4. 4.
    Kimura H, Matsutani K, Tsutsumi S, Nomura S, Ishikawa K, Hattori Y, Itahashi M, Hoshino H (2005) Catal Lett 99:119–131CrossRefGoogle Scholar
  5. 5.
    Wang Y, Liao Q, Xi C (2010) ChemInform 12:2951–2953Google Scholar
  6. 6.
    Naghash AR, Etsell TH, Xu S (2005) Chem Mater 18:2480–2488CrossRefGoogle Scholar
  7. 7.
    Bridier B, Perez-Ramirez J (2010) J Am Chem Soc 132:4321–4327CrossRefGoogle Scholar
  8. 8.
    Pang SF, Deng YQ, Shi F (2015) Chem Commun 51:9471–9474CrossRefGoogle Scholar
  9. 9.
    Shi F, Tse MK, Cui XJ, Goerdes D, Michalik D, Thurow K, Deng YQ, Beller M (2009) Angew Chem Int Ed 48:5912–5915CrossRefGoogle Scholar
  10. 10.
    Hamid MHSA, Williams JMJ (2007) Chem Commun 38:725–727CrossRefGoogle Scholar
  11. 11.
    Blank B, Michlik S, Kempe R (2009) Adv Synth Catal 351:2903–2911CrossRefGoogle Scholar
  12. 12.
    Cumpstey I, Agrawal S, Borbasa KE, Martín-Matute B (2011) Chem Commun 47:7827–7829CrossRefGoogle Scholar
  13. 13.
    Liu X, Meng C, Han Y (2005) J Phys Chem C 117:1350–1357CrossRefGoogle Scholar
  14. 14.
    Watson AJ, Maxwell AC, Williams JMJ (2011) J Org Chem 76:2328–2331CrossRefGoogle Scholar
  15. 15.
    Zhou Y, Li X, Pan X, Bao X (2011) J Mater Chem 22:14155–14159CrossRefGoogle Scholar
  16. 16.
    Kimura H, Ishikawa K, Nishio K (2005) Appl Catal A-Gen 286:120–127CrossRefGoogle Scholar
  17. 17.
    Kimura H, Taniguchi H (2005) Appl Catal A-Gen 287:191–196CrossRefGoogle Scholar
  18. 18.
    Kimura H, Tsutsumi S, Tsukada K (2005) Appl Catal A-Gen 292:281–286CrossRefGoogle Scholar
  19. 19.
    Qin H, Huang L, Zheng J, Ren Q (2011) Inorg Chem Commun 72:78–82CrossRefGoogle Scholar
  20. 20.
    Ou B, Chen M, Guo Y, Bian S, He C, Yan J, Liu G, Li D, Yi S (2011) Mater Lett 207:169–171CrossRefGoogle Scholar
  21. 21.
    Li Q, Zang G, Peng S (2002) J Surfactant Deterg 5:229–233CrossRefGoogle Scholar
  22. 22.
    Mittal VK, Bera S, Nithya R, Srinivasan MP, Velmurugan S, Narasimhan SV (2004) J Nucl Mater 335:302–310CrossRefGoogle Scholar
  23. 23.
    Jang W, Jun Y, Shi J, Ro H, Yoon W (2018) J Power Sources 378:97–602Google Scholar
  24. 24.
    Chmielarz L, Jabłońska M, Strumiński A, Piwowarska Z, Wegrzyn A, Witkowski S, Michalik M (2013) Appl Catal B- Environ 130–131:152–162CrossRefGoogle Scholar
  25. 25.
    Ambursa MM, Ali TH, Voon LH, Sudarsanam P, Bhargava SK, Abd Hamid SB (2016) Fuel 180:767–776CrossRefGoogle Scholar
  26. 26.
    de Fria DLA, Venâncio Silva S, de Oliveira MT (1997) J Raman Spectrosc 28:873–878CrossRefGoogle Scholar
  27. 27.
    Kannapu HPR, Suh YW, Narani A, Burri DR, Seetha RRK (2017) Catal Lett 147:90–101CrossRefGoogle Scholar
  28. 28.
    Khromova SA, Smirnov AA, Bulavchenko OA, Saraev AA, Kaichev VV, Reshetnikov SI, Yakovlev VA (2014) Appl Catal A-Gen 470:261–270CrossRefGoogle Scholar
  29. 29.
    Tomishige K, Himeno Y, Matsuo Y, Yoshinaga Y, Fujimoto K (2000) Ind Eng Chem Res 39:1891–1897CrossRefGoogle Scholar
  30. 30.
    Moliner R, Echegoyen Y, Suelves I, Lázaro MJ, Palacios JM (2008) Int J Hydrog Energy 33:1719–1728CrossRefGoogle Scholar
  31. 31.
    Chesnokov VV, Chichkan AS (2009) Int J Hydrog Energy 34:2979–2985CrossRefGoogle Scholar
  32. 32.
    Li F, Wang T, Zhang WM, Zhang GH (2016) China Surfactant Deterg Cosmet 46(7):419–422Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Tao Zhou
    • 1
  • Anqi Dai
    • 1
  • Mingxi Pan
    • 1
  • Jiangrong Kong
    • 1
  • Yonghua Zhou
    • 1
  1. 1.Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical EngineeringCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations