Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 1, pp 237–247 | Cite as

Alkaline–modified montmorillonite K10: an efficient catalyst for green condensation reaction of aromatic aldehydes with active methylene compounds

  • Manef Chtourou
  • Achraf Lahyani
  • Mahmoud TrabelsiEmail author


An efficient and reusable catalyst, alkaline–modified Montmorillonite K10, has been developed and used in the Knoevenagel condensation. A series of condensation reactions based on ultrasound irradiation of different types of active methylene compounds and a variety of aromatic aldehydes showed the high efficiency of the prepared catalyst. This protocol has notable advantages, such as being eco-friendly, the ease of the work-up and reuse of the catalyst. The isolated compounds were synthesized in high yields (83–100%) in a short reaction time and were obtained, after crystallization, in pure form (IR, NMR and GC) without further purification. When ethyl cyanoacetate was used as active methylene compound, the reaction is highly stereoselective with only E geometry.


Alkaline modification Knoevenagel condensation Montmorillonite K10 Ultrasound irradiation 


  1. 1.
    Tietze LF (1996) Chem Rev 96:115–136CrossRefGoogle Scholar
  2. 2.
    Parida KM, Rath D (2009) J Mol Catal A: Chem 310:93–100CrossRefGoogle Scholar
  3. 3.
    Bartoli G, Bosco M, Carlone A, Dapozzo R, Galzerano P, Melichiorre P, Sambri L (2008) Tetrahedron Lett 49:2555–2557CrossRefGoogle Scholar
  4. 4.
    Goa Y, Wu P, Tatsumi T (2004) J Catal 224:107–114CrossRefGoogle Scholar
  5. 5.
    Cardillo G, Fabbroni S, Gentilucci L, Gianotti M, Tolomelli A (2003) Synth Commun 33:1587–1594CrossRefGoogle Scholar
  6. 6.
    Narsaiah AV, Basak AR, Visali B, Nagaiah K (2004) Synth Commun 34:2893–2901CrossRefGoogle Scholar
  7. 7.
    Calvino-Casilda V, Martin-Aranda RM, Lopez-Peinado AJ, Sobczak I, Ziolek M (2009) Catal Today 142:278–282CrossRefGoogle Scholar
  8. 8.
    Rao PS, Venkataratnam RV (1991) Tetrahedron Lett 32:5821–5822CrossRefGoogle Scholar
  9. 9.
    Ammar HB, Chtourou M, Frikha MH, Trabelsi M (2015) Ultrason Sonochem 22:559–564CrossRefGoogle Scholar
  10. 10.
    Moison H, Texier-Boullet F, Faucaud A (1987) Tetrahedron 43:537–542CrossRefGoogle Scholar
  11. 11.
    Saravanamurugan S, Palanichamy M, Hartmann M, Murugesan V (2006) Appl Catal A Gen 298:8–15CrossRefGoogle Scholar
  12. 12.
    Corma A, Fornes V, Martin-Aranda RM, Reiy F (1992) J Catal 134:58–65CrossRefGoogle Scholar
  13. 13.
    Reddy B, Patil MK, Rao KN, Reddy GK (2006) J Mol Catal A: Chem 258:302–307CrossRefGoogle Scholar
  14. 14.
    Bennazha J, Zahouily M, Sebti S, Boukhari A, Holt EM (2001) Catal Commun 2:101–104CrossRefGoogle Scholar
  15. 15.
    Gawande MB, Jayram RV (2006) Catal Commun 7:931–935CrossRefGoogle Scholar
  16. 16.
    Sahani AJ, Burange AS, Jayaram RV (2018) Res Chem Intermed. Google Scholar
  17. 17.
    Yan H, Zhang HY, Wang L, Zhang Y, Zhao J (2018) Reac Kinet Mech Cat. Google Scholar
  18. 18.
    Subba Rao YV, Choudary BM (1991) Synth Commun 21:1163–1166CrossRefGoogle Scholar
  19. 19.
    Moussaoui Y, Ben Salem R (2007) CR Chim 10:1162–1169CrossRefGoogle Scholar
  20. 20.
    Yadav MK, Chudasama CD, Jasra RV (2004) J Mol Catal A: Chem 216:51–59CrossRefGoogle Scholar
  21. 21.
    Hart MP, Brown DR (2004) J Mol Catal A: Chem 212:315–321CrossRefGoogle Scholar
  22. 22.
    Chtourou M, Abdelhédi R, Frikha MH, Trabelsi M (2010) Ultrason Sonochem 17:246–249CrossRefGoogle Scholar
  23. 23.
    Corma A, Martin-Aranda RM (1991) J Catal 130:130–137CrossRefGoogle Scholar
  24. 24.
    Beavers WA, Culp RD (2004) U. S. Patent 6 794 325 B1Google Scholar
  25. 25.
    de la Fuente MA, Juarez M, de Rafael D, Olano A (1999) Food Chem 66:301–306CrossRefGoogle Scholar
  26. 26.
    Ayoub M, Abdullah AZ (2013) Catal Commun 34:22–25CrossRefGoogle Scholar
  27. 27.
    Martin-Aranda RM, Ortega-Cantero E, Rojas-Cervantes ML, Vicente-Rodriguez MA, Banares-Munoz MA (2002) Catal Lett 84:201–204CrossRefGoogle Scholar
  28. 28.
    Molu ZB, Yurdakoc K (2010) Microporous Mesoporous Mater 127:50–60CrossRefGoogle Scholar
  29. 29.
    Rode CV, Kshirsagar VS, Nadgeri JM, Patil KR (2007) Ind Eng Chem Res 46:8413–8419CrossRefGoogle Scholar
  30. 30.
    Chtourou M, Frikha MH, Trabelsi M (2006) Appl Clay Sci 32:210–216CrossRefGoogle Scholar
  31. 31.
    Duran-Valle CJ, Fonseca IM, Calvino-Casilda V, Picallo M, Lopez-Peinado AJ, Martin-Aranda RM (2005) Catal Today 107–108:500–506CrossRefGoogle Scholar
  32. 32.
    Abdullaha AZ, Wibowoa TY, Zakaria R (2011) Chem Eng J 167:328–334CrossRefGoogle Scholar
  33. 33.
    Postole G, Chowdhury B, Karmakar B, Pinki K, Banerji J, Auroux A (2010) J Catal 269:110–121CrossRefGoogle Scholar
  34. 34.
    Climent MJ, Corma A, Iborna S, Velty A (2002) J Mol Catal A: Chem 182–183:327–342CrossRefGoogle Scholar
  35. 35.
    Basavaiah D, Bakthadoss M (1998) Chem Commun 0:1639–1640Google Scholar
  36. 36.
    Zhao S, Wang X, Zhang L (2013) RSC Adv 3:11691–11696CrossRefGoogle Scholar
  37. 37.
    Ye W, Jiang H, Yang XC (2011) J Chem Sci 123:331–334CrossRefGoogle Scholar
  38. 38.
    Liu Y, Liang J, Liu XH, Fan JC, Shang ZC (2008) Chin Chem Lett 19:1043–1046CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Manef Chtourou
    • 1
  • Achraf Lahyani
    • 1
  • Mahmoud Trabelsi
    • 1
    Email author
  1. 1.Laboratory of Organic Chemistry, Faculty of Sciences of SfaxUniversity of SfaxSfaxTunisia

Personalised recommendations