Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 1, pp 153–165 | Cite as

Hydrogen generation from hydrazine catalyzed by a Ni1-(CeO1.8)0.5/carbon-nanotubes catalyst

  • Yongli Dong
  • Hong-Yu Zhang
  • Guohui Yin
  • Jiquan ZhaoEmail author
  • Yuecheng Zhang
Article
  • 46 Downloads

Abstract

Well-dispersed Ni-CeOx nanoparticles grown on carbon nanotubes (CNTs) were successfully synthesized via a simple one-step co-reduction method. The structure and properties of the catalysts were investigated by XRD, XPS, SEM, TEM and ICP-OES. Among the prepared catalysts, Ni1-(CeO1.8)0.5/CNTs exhibited the highest catalytic activity, with 100% hydrogen selectivity and 80 molH2 mol Ni −1  h−1 of hydrogen generation rate (HGR) for hydrogen generation from hydrazine under 1.0 M NaOH solution at 343 K. This superior catalytic performance might be attributed to the smaller sizes and amorphous states of Ni species in Ni1-(CeO1.8)0.5/CNTs, as well as the close attachment of Ni-CeOx NPs on CNTs.

Keywords

Ni-CeOx/CNTs Hydrazine Hydrogen generation H2 selectivity 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21476057), the Natural Science Foundation of Hebei Province, China (Grant Nos. B2016202393, B2015202284) and the Program for the Top Young Innovative Talents of Hebei Province, China (Grant No. BJ2017010).

Supplementary material

11144_2018_1483_MOESM1_ESM.doc (1.7 mb)
Supplementary material 1 (DOC 1769 kb)

References

  1. 1.
    Dresselhaus MS, Thomas IL (2001) Nature 414:332–337Google Scholar
  2. 2.
    Norskov JK, Christensen CH (2006) Science 312:1322–1323Google Scholar
  3. 3.
    Jain IP (2009) Int J Hydrogen Energy 34:7368–7378Google Scholar
  4. 4.
    Winter CJ (2009) Int J Hydrogen Energy 34:1–52Google Scholar
  5. 5.
    Armaroli N, Balzani V (2011) Chemsuschem 4:21–36Google Scholar
  6. 6.
    Van Den Berg AWC, Areán CO (2008) Chem Commun 6:668–681Google Scholar
  7. 7.
    Niemeier JK, Kjell DP (2013) Org Process Res Dev 17:1580–1590Google Scholar
  8. 8.
    Eberle U, Felderhoff M, Schueth F (2009) Angew Chem Int Ed 48:6608–6630Google Scholar
  9. 9.
    Dopheide R, Schröter L, Zacharias H (1991) Surf Sci 257:86–96Google Scholar
  10. 10.
    Block J, Schulz-Ekloff G (1973) J Catal 30:327–329Google Scholar
  11. 11.
    Prasad J, Gland JL (1991) Langmuir 7:722–726Google Scholar
  12. 12.
    Singh SK, Zhang X, Xu Q (2009) J Am Chem Soc 131:9894–9895Google Scholar
  13. 13.
    Cho SJ, Lee J, Lee YS, Kim DP (2006) Catal Lett 109:181–186Google Scholar
  14. 14.
    Singh SK, Xu Q (2009) J Am Chem Soc 131:18032–18033Google Scholar
  15. 15.
    Singh SK, Xu Q (2010) Chem Commun 46:6545–6547Google Scholar
  16. 16.
    Singh SK, Iizuka Y, Xu Q (2011) Int J Hydrogen Energy 36:11794–11801Google Scholar
  17. 17.
    Singh SK, Xu Q (2010) Inorg Chem 49:6148–6152Google Scholar
  18. 18.
    Wang J, Zhang XB, Wang ZL, Wang LM, Zhang Y (2012) Energy Environ Sci 5:6885–6888Google Scholar
  19. 19.
    He L, Huang YQ, Liu XY, Li L, Wang A, Wang X, Mou C, Zhang T (2014) Appl Catal B 147:779–788Google Scholar
  20. 20.
    Du YS, Su J, Luo W, Cheng GA (2015) CS Appl Mat Interfaces 7:1031–1034Google Scholar
  21. 21.
    Wen L, Du XQ, Su J, Cai P, Cheng G (2015) Dalton Trans 44:6212–6218Google Scholar
  22. 22.
    Zhao PP, Cao N, Luo W, Cheng G (2015) J Mater Chem A 3:12468–12475Google Scholar
  23. 23.
    Chen Y, Wang L, Zhai YN, Chen H, Dou Y, Li J, Zheng H, Cao R (2017) RSC Adv 7:32310–32315Google Scholar
  24. 24.
    Du X, Liu C, Du C, Cai P, Cheng G, Luo W (2017) Nano Res 10:2856–2865Google Scholar
  25. 25.
    Singh SK, Aranishi K, Xu Q (2011) J Am Chem Soc 133:19638–19641Google Scholar
  26. 26.
    Zhang J, Kang Q, Yang Z, Dai H, Zhuang D, Wang P (2013) J Mater Chem A 1:11623–11628Google Scholar
  27. 27.
    Wang J, Li Y, Zhang Y (2014) Adv Funct Mater 24:7073–7077Google Scholar
  28. 28.
    Gao W, Li C, Chen H, Wu M, He S, Wei M, Evansa DG, Duan X (2014) Green Chem 16:1560–1568Google Scholar
  29. 29.
    Wang H, Wu L, Jia A, Li X, Shi Z, Duan M, Wang Y (2018) Chem Eng J 332:637–646Google Scholar
  30. 30.
    Kang W, Varma A (2018) App Catal B 220:409–416Google Scholar
  31. 31.
    De Jong KP, Geus JW (2000) Cat Rev 42:481–510Google Scholar
  32. 32.
    Serp P, Castillejos E (2010) ChemCatChem 2:41–47Google Scholar
  33. 33.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136Google Scholar
  34. 34.
    Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Nat Mater 6:507Google Scholar
  35. 35.
    Zhang J, Müller JO, Zheng W, Wang D, Su D, Schlogl R (2008) Nano Lett 8:2738–2743Google Scholar
  36. 36.
    Chen Z, Guan Z, Li M, Yang Q, Li C (2011) Angew Chem Int Ed 50:4913–4917Google Scholar
  37. 37.
    Chaichi A, Sadrnezhaad SK, Malekjafarian M (2018) Int J Hydrogen Energy 43:1319–1336Google Scholar
  38. 38.
    Łamacz A, Matus K, Liszka B, Silvestre-Albero J, Lafjah M, Dintzer T, Janowska I (2018) Catal Today 301:172–182Google Scholar
  39. 39.
    Lordi V, Yao N, Wei J (2001) Chem Mater 13:733–737Google Scholar
  40. 40.
    Men Y, Du X, Cheng G, Luo W (2017) Int J Hydrogen Energy 42:27165–27173Google Scholar
  41. 41.
    Zhang Y, Zang J, Huang J, Zhou S, Gao H, Wang Y (2018) J Appl Electrochem 48:157–164Google Scholar
  42. 42.
    Farmer JA, Campbell CT (2010) Science 329:933–936Google Scholar
  43. 43.
    Wang HL, Yan JM, Wang ZL, Song O, Jiang Q (2013) J Mater Chem A 1:14957–14962Google Scholar
  44. 44.
    Cao N, Yang L, Du C, Su J, Luo W, Cheng G (2014) J Mater Chem A 2:14344–14347Google Scholar
  45. 45.
    Liu X, Zhou K, Wang L, Wang B, Li Y (2009) J Am Chem Soc 131:3140–3141Google Scholar
  46. 46.
    Ingo GM, Paparazzo E, Bagnarelli O, Zacchetti N (1990) Surf Interface Anal 16:515–519Google Scholar
  47. 47.
    Yang M, Ling Q, Rao R, Yang H, Zhang Q (2013) J Mol Catal A 380:61–69Google Scholar
  48. 48.
    Gao Y, Xie K, Wang W, Mi S, Liu N, Pan G, Huang W (2015) Catal Sci Technol 5:1568–1579Google Scholar
  49. 49.
    Hu X, Gao Y, Wang W, Chen C (2016) Int J Hydrogen Energy 41:14079–14087Google Scholar
  50. 50.
    Nie R, Liang D, Shen L, Gao J, Chen P, Hou Z (2012) Appl Catal B 127:212–220Google Scholar
  51. 51.
    He L, Liang B, Li L, Yang X, Huang Y, Wang A, Wang X, Zhang T (2015) ACS Catal 5:1623–1628Google Scholar
  52. 52.
    Zhang Z, Wang Y, Chen X, Lu ZH (2015) J Power Sources 291:14–19Google Scholar
  53. 53.
    Zhu Q, Xu Q (2015) Energy Environ Sci 8:478–512Google Scholar
  54. 54.
    Yamada K, Asazawa K, Yasuda K, Ioroi T, Tanaka H, Miyazaki Y, Kobayashi T (2003) J Power Sources 115:236–242Google Scholar
  55. 55.
    Rosca V, Duca M, de Groot MT, Koper MT (2009) Chem Rev 109:2209–2244Google Scholar
  56. 56.
    Bhattacharjee D, Mandal K, Dasgupta S (2015) J Power Sources 287:96–99Google Scholar
  57. 57.
    Wang HL, Yan JM, Li SJ, Zhang X, Jiang Q (2014) J Mater Chem A 3:121–124Google Scholar
  58. 58.
    He L, Huang Y, Wang A, Liu Y, Liu X, Chen X, Delgado JJ, Wang X, Zhang T (2013) J Catal 298:1–9Google Scholar
  59. 59.
    Singh SK, Lu ZH, Xu Q (2011) Eur J Inorg Chem 2011(14):2232–2237Google Scholar
  60. 60.
    Manukyan KV, Cross A, Rouvimov S, Miller J, Mukasyan AS, Wolf EE (2014) Appl Catal A 476:47–53Google Scholar
  61. 61.
    Bhattacharjee D, Dasgupta S (2015) J Mater Chem A 3:24371–24378Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinChina
  2. 2.National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationTianjinChina

Personalised recommendations