Hydrogen generation from hydrazine catalyzed by a Ni1-(CeO1.8)0.5/carbon-nanotubes catalyst

  • Yongli Dong
  • Hong-Yu Zhang
  • Guohui Yin
  • Jiquan Zhao
  • Yuecheng Zhang


Well-dispersed Ni-CeOx nanoparticles grown on carbon nanotubes (CNTs) were successfully synthesized via a simple one-step co-reduction method. The structure and properties of the catalysts were investigated by XRD, XPS, SEM, TEM and ICP-OES. Among the prepared catalysts, Ni1-(CeO1.8)0.5/CNTs exhibited the highest catalytic activity, with 100% hydrogen selectivity and 80 molH2 mol Ni −1  h−1 of hydrogen generation rate (HGR) for hydrogen generation from hydrazine under 1.0 M NaOH solution at 343 K. This superior catalytic performance might be attributed to the smaller sizes and amorphous states of Ni species in Ni1-(CeO1.8)0.5/CNTs, as well as the close attachment of Ni-CeOx NPs on CNTs.


Ni-CeOx/CNTs Hydrazine Hydrogen generation H2 selectivity 



This work was supported by the National Natural Science Foundation of China (Grant No. 21476057), the Natural Science Foundation of Hebei Province, China (Grant Nos. B2016202393, B2015202284) and the Program for the Top Young Innovative Talents of Hebei Province, China (Grant No. BJ2017010).

Supplementary material

11144_2018_1483_MOESM1_ESM.doc (1.7 mb)
Supplementary material 1 (DOC 1769 kb)


  1. 1.
    Dresselhaus MS, Thomas IL (2001) Nature 414:332–337CrossRefGoogle Scholar
  2. 2.
    Norskov JK, Christensen CH (2006) Science 312:1322–1323CrossRefGoogle Scholar
  3. 3.
    Jain IP (2009) Int J Hydrogen Energy 34:7368–7378CrossRefGoogle Scholar
  4. 4.
    Winter CJ (2009) Int J Hydrogen Energy 34:1–52CrossRefGoogle Scholar
  5. 5.
    Armaroli N, Balzani V (2011) Chemsuschem 4:21–36CrossRefGoogle Scholar
  6. 6.
    Van Den Berg AWC, Areán CO (2008) Chem Commun 6:668–681CrossRefGoogle Scholar
  7. 7.
    Niemeier JK, Kjell DP (2013) Org Process Res Dev 17:1580–1590CrossRefGoogle Scholar
  8. 8.
    Eberle U, Felderhoff M, Schueth F (2009) Angew Chem Int Ed 48:6608–6630CrossRefGoogle Scholar
  9. 9.
    Dopheide R, Schröter L, Zacharias H (1991) Surf Sci 257:86–96CrossRefGoogle Scholar
  10. 10.
    Block J, Schulz-Ekloff G (1973) J Catal 30:327–329CrossRefGoogle Scholar
  11. 11.
    Prasad J, Gland JL (1991) Langmuir 7:722–726CrossRefGoogle Scholar
  12. 12.
    Singh SK, Zhang X, Xu Q (2009) J Am Chem Soc 131:9894–9895CrossRefGoogle Scholar
  13. 13.
    Cho SJ, Lee J, Lee YS, Kim DP (2006) Catal Lett 109:181–186CrossRefGoogle Scholar
  14. 14.
    Singh SK, Xu Q (2009) J Am Chem Soc 131:18032–18033CrossRefGoogle Scholar
  15. 15.
    Singh SK, Xu Q (2010) Chem Commun 46:6545–6547CrossRefGoogle Scholar
  16. 16.
    Singh SK, Iizuka Y, Xu Q (2011) Int J Hydrogen Energy 36:11794–11801CrossRefGoogle Scholar
  17. 17.
    Singh SK, Xu Q (2010) Inorg Chem 49:6148–6152CrossRefGoogle Scholar
  18. 18.
    Wang J, Zhang XB, Wang ZL, Wang LM, Zhang Y (2012) Energy Environ Sci 5:6885–6888CrossRefGoogle Scholar
  19. 19.
    He L, Huang YQ, Liu XY, Li L, Wang A, Wang X, Mou C, Zhang T (2014) Appl Catal B 147:779–788CrossRefGoogle Scholar
  20. 20.
    Du YS, Su J, Luo W, Cheng GA (2015) CS Appl Mat Interfaces 7:1031–1034CrossRefGoogle Scholar
  21. 21.
    Wen L, Du XQ, Su J, Cai P, Cheng G (2015) Dalton Trans 44:6212–6218CrossRefGoogle Scholar
  22. 22.
    Zhao PP, Cao N, Luo W, Cheng G (2015) J Mater Chem A 3:12468–12475CrossRefGoogle Scholar
  23. 23.
    Chen Y, Wang L, Zhai YN, Chen H, Dou Y, Li J, Zheng H, Cao R (2017) RSC Adv 7:32310–32315CrossRefGoogle Scholar
  24. 24.
    Du X, Liu C, Du C, Cai P, Cheng G, Luo W (2017) Nano Res 10:2856–2865CrossRefGoogle Scholar
  25. 25.
    Singh SK, Aranishi K, Xu Q (2011) J Am Chem Soc 133:19638–19641CrossRefGoogle Scholar
  26. 26.
    Zhang J, Kang Q, Yang Z, Dai H, Zhuang D, Wang P (2013) J Mater Chem A 1:11623–11628CrossRefGoogle Scholar
  27. 27.
    Wang J, Li Y, Zhang Y (2014) Adv Funct Mater 24:7073–7077Google Scholar
  28. 28.
    Gao W, Li C, Chen H, Wu M, He S, Wei M, Evansa DG, Duan X (2014) Green Chem 16:1560–1568CrossRefGoogle Scholar
  29. 29.
    Wang H, Wu L, Jia A, Li X, Shi Z, Duan M, Wang Y (2018) Chem Eng J 332:637–646CrossRefGoogle Scholar
  30. 30.
    Kang W, Varma A (2018) App Catal B 220:409–416CrossRefGoogle Scholar
  31. 31.
    De Jong KP, Geus JW (2000) Cat Rev 42:481–510CrossRefGoogle Scholar
  32. 32.
    Serp P, Castillejos E (2010) ChemCatChem 2:41–47CrossRefGoogle Scholar
  33. 33.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105–1136CrossRefGoogle Scholar
  34. 34.
    Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X (2007) Nat Mater 6:507CrossRefGoogle Scholar
  35. 35.
    Zhang J, Müller JO, Zheng W, Wang D, Su D, Schlogl R (2008) Nano Lett 8:2738–2743CrossRefGoogle Scholar
  36. 36.
    Chen Z, Guan Z, Li M, Yang Q, Li C (2011) Angew Chem Int Ed 50:4913–4917CrossRefGoogle Scholar
  37. 37.
    Chaichi A, Sadrnezhaad SK, Malekjafarian M (2018) Int J Hydrogen Energy 43:1319–1336CrossRefGoogle Scholar
  38. 38.
    Łamacz A, Matus K, Liszka B, Silvestre-Albero J, Lafjah M, Dintzer T, Janowska I (2018) Catal Today 301:172–182CrossRefGoogle Scholar
  39. 39.
    Lordi V, Yao N, Wei J (2001) Chem Mater 13:733–737CrossRefGoogle Scholar
  40. 40.
    Men Y, Du X, Cheng G, Luo W (2017) Int J Hydrogen Energy 42:27165–27173CrossRefGoogle Scholar
  41. 41.
    Zhang Y, Zang J, Huang J, Zhou S, Gao H, Wang Y (2018) J Appl Electrochem 48:157–164CrossRefGoogle Scholar
  42. 42.
    Farmer JA, Campbell CT (2010) Science 329:933–936CrossRefGoogle Scholar
  43. 43.
    Wang HL, Yan JM, Wang ZL, Song O, Jiang Q (2013) J Mater Chem A 1:14957–14962CrossRefGoogle Scholar
  44. 44.
    Cao N, Yang L, Du C, Su J, Luo W, Cheng G (2014) J Mater Chem A 2:14344–14347CrossRefGoogle Scholar
  45. 45.
    Liu X, Zhou K, Wang L, Wang B, Li Y (2009) J Am Chem Soc 131:3140–3141CrossRefGoogle Scholar
  46. 46.
    Ingo GM, Paparazzo E, Bagnarelli O, Zacchetti N (1990) Surf Interface Anal 16:515–519CrossRefGoogle Scholar
  47. 47.
    Yang M, Ling Q, Rao R, Yang H, Zhang Q (2013) J Mol Catal A 380:61–69CrossRefGoogle Scholar
  48. 48.
    Gao Y, Xie K, Wang W, Mi S, Liu N, Pan G, Huang W (2015) Catal Sci Technol 5:1568–1579CrossRefGoogle Scholar
  49. 49.
    Hu X, Gao Y, Wang W, Chen C (2016) Int J Hydrogen Energy 41:14079–14087CrossRefGoogle Scholar
  50. 50.
    Nie R, Liang D, Shen L, Gao J, Chen P, Hou Z (2012) Appl Catal B 127:212–220CrossRefGoogle Scholar
  51. 51.
    He L, Liang B, Li L, Yang X, Huang Y, Wang A, Wang X, Zhang T (2015) ACS Catal 5:1623–1628CrossRefGoogle Scholar
  52. 52.
    Zhang Z, Wang Y, Chen X, Lu ZH (2015) J Power Sources 291:14–19CrossRefGoogle Scholar
  53. 53.
    Zhu Q, Xu Q (2015) Energy Environ Sci 8:478–512CrossRefGoogle Scholar
  54. 54.
    Yamada K, Asazawa K, Yasuda K, Ioroi T, Tanaka H, Miyazaki Y, Kobayashi T (2003) J Power Sources 115:236–242CrossRefGoogle Scholar
  55. 55.
    Rosca V, Duca M, de Groot MT, Koper MT (2009) Chem Rev 109:2209–2244CrossRefGoogle Scholar
  56. 56.
    Bhattacharjee D, Mandal K, Dasgupta S (2015) J Power Sources 287:96–99CrossRefGoogle Scholar
  57. 57.
    Wang HL, Yan JM, Li SJ, Zhang X, Jiang Q (2014) J Mater Chem A 3:121–124CrossRefGoogle Scholar
  58. 58.
    He L, Huang Y, Wang A, Liu Y, Liu X, Chen X, Delgado JJ, Wang X, Zhang T (2013) J Catal 298:1–9CrossRefGoogle Scholar
  59. 59.
    Singh SK, Lu ZH, Xu Q (2011) Eur J Inorg Chem 2011(14):2232–2237CrossRefGoogle Scholar
  60. 60.
    Manukyan KV, Cross A, Rouvimov S, Miller J, Mukasyan AS, Wolf EE (2014) Appl Catal A 476:47–53CrossRefGoogle Scholar
  61. 61.
    Bhattacharjee D, Dasgupta S (2015) J Mater Chem A 3:24371–24378CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.School of Chemical Engineering and TechnologyHebei University of TechnologyTianjinChina
  2. 2.National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationTianjinChina

Personalised recommendations