Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 1, pp 119–136 | Cite as

Coupling of methanol and ethanol over CuMgAlOx catalysts: the roles of copper species and alkalinity

  • Fulong Cheng
  • Heqin GuoEmail author
  • Jinglei Cui
  • Bo Hou
  • Hongjuan Xi
  • Litao Jia
  • Debao LiEmail author
Article
  • 105 Downloads

Abstract

A series of CuMgAlOx mixed oxides with Cu content between 0 and 5 mol%, were obtained by the calcination of hyrotalcite-like precursors. The catalytic activity was evaluated by the coupling of methanol and ethanol. The physical and chemical properties of the catalysts were characterized by XRD, TG, XPS, N2O titration, in situ CO-DRIFTS, XPS, H2-TPR, NH3-TPD, and CO2-TPD techniques. The results show that with the increase of Cu content, the surface areas of exposed Cu species (Cu0 and Cu+) and the hydrogen dissociation abilities of the reduced catalysts increase, while the amount of the moderately basic sites decreases. The catalytic performance shows that the conversions of methanol and ethanol are strongly related to the surface areas of exposed Cu species. The STY of Guerbet products (C3 and C4 alcohols, aldehydes) is closely related to the surface exposed Cu species and the moderately basic sites, and the CHT-3 catalyst has a maximum of 125.01 g kg−1 h−1. Moreover, by-products including esters and CO2 also show a strong positive relationship with the surface areas of exposed Cu species.

Keywords

CuMgAlOx Methanol and Ethanol Guerbet 

Notes

Acknowledgements

This work was supported by the key project of National Natural Science Foundation of China (Grant No.21736007) and the project of National Natural Science Foundation of China (Grant No.21303241 and No.21503255).

Supplementary material

11144_2018_1476_MOESM1_ESM.pdf (404 kb)
Supplementary material 1 (PDF 404 kb)

References

  1. 1.
    Ajjou AN, Alper H (1998) J Am Chem Soc 120:1466CrossRefGoogle Scholar
  2. 2.
    Andrianary P, Jenner G, Libs S, Teller G (1987) J Mol Catal 39:93CrossRefGoogle Scholar
  3. 3.
    Silvester L, Lamonier JF, Faye J, Capron M, Vannier RN, Lamonier C, Dubois JL, Couturier JL, Calais C, Dumeignil F (2015) Catal Sci Technol 5:2994CrossRefGoogle Scholar
  4. 4.
    Carlini C, Di-Girolamo M, Macinai A, Marchionna M, Noviello M, Galletti AMR, Sbrana G (2003) J Mol Catal A 200:137CrossRefGoogle Scholar
  5. 5.
    Biermann M, Gruss H, Hummel W, Groeger H (2016) ChemCatChem 8:895CrossRefGoogle Scholar
  6. 6.
    Liu Q, Xu GQ, Wang XC, Mu XD (2016) Green Chem 18:2811CrossRefGoogle Scholar
  7. 7.
    Birky TW, Kozlowski JT, Davis RJ (2013) J Catal 298:130CrossRefGoogle Scholar
  8. 8.
    Hanspal S, Young ZD, Shou H, Davis RJ (2015) ACS Catal 5:1737CrossRefGoogle Scholar
  9. 9.
    Hathaway PE, Davis ME (1989) J Catal 116:263CrossRefGoogle Scholar
  10. 10.
    Yang C, Meng ZY (1993) J Catal 142:37CrossRefGoogle Scholar
  11. 11.
    Tsuchida T, Sakuma S, Takeguchi T, Ueda W (2006) Ind Eng Chem Res 45:8634CrossRefGoogle Scholar
  12. 12.
    Ogo S, Onda A, Iwasa Y, Hara K, Fukuoka A, Yanagisawa K (2012) J Catal 294:24CrossRefGoogle Scholar
  13. 13.
    Di-Cosimo JI, Apesteguia CR, Gines MJL, Iglesia E (2000) J Catal 190:261CrossRefGoogle Scholar
  14. 14.
    Ordonez S, Diaz E, Leon M, Faba L (2011) Catal Today 167:71CrossRefGoogle Scholar
  15. 15.
    Cavani F, Trifiro F, Vaccari A (1991) Catal Today 11:173CrossRefGoogle Scholar
  16. 16.
    Carlini C, Marchionna M, Noviello M, Galletti AMR, Sbrana G, Basile F, Vaccari A (2005) J Mol Catal A 232:13CrossRefGoogle Scholar
  17. 17.
    Bravo-Suarez JJ, Subramaniam B, Chaudhari RV (2013) Appl Catal A 455:234CrossRefGoogle Scholar
  18. 18.
    Chinchen GC, Hay CM, Vandervell HD, Waugh KC (1987) J Catal 103:79CrossRefGoogle Scholar
  19. 19.
    Wang Y, Zhao YJ, Lv J, Ma XB (2017) ChemCatChem 9:2085CrossRefGoogle Scholar
  20. 20.
    Gao P, Li F, Xiao FK, Zhao N, Sun NN, Wei W, Zhong LS, Sun YH (2012) Catal Sci Technol 2:1447CrossRefGoogle Scholar
  21. 21.
    Liu J, Yao P, Ni ZM, Li Y, Shi W (2011) Acta Phys-Chim Sin 27:2088Google Scholar
  22. 22.
    Gao P, Li F, Zhao N, Xiao FK, Wei W, Zhong LS, Sun YH (2013) Appl Catal A 468:442CrossRefGoogle Scholar
  23. 23.
    Behrens M, Kasatkin I, Kuehl S, Weinberg G (2010) Chem Mater 22:386CrossRefGoogle Scholar
  24. 24.
    Meng XJ, Guo HQ, Wang Q, XiaoY Chen CB, Hou B, Li DB (2017) Catal Sci Technol 7:3511CrossRefGoogle Scholar
  25. 25.
    Poulston S, Parlett PM, Stone P, Bowker M (1996) Surf Interface Anal 24:811CrossRefGoogle Scholar
  26. 26.
    Liakakou ET, Isaacs MA, Wilson K, Lee AF, Heracleous E (2017) Catal Sci Technol 7:988CrossRefGoogle Scholar
  27. 27.
    Jiang Z, Hao ZP, Yu JJ, Hou HX, Hu C, Su JX (2005) Catal Lett 99:157CrossRefGoogle Scholar
  28. 28.
    Kannan S, Dubey A, Knozinger H (2005) J Catal 231:381CrossRefGoogle Scholar
  29. 29.
    Bowker M, Madix RJ (1982) Surf Sci 116:549CrossRefGoogle Scholar
  30. 30.
    Wang Y, Shen YL, Zhao YJ, Lv J, Wang SP, Ma XB (2015) ACS Catal 5:6200CrossRefGoogle Scholar
  31. 31.
    Hattori H (1995) Chem Rev 95:537CrossRefGoogle Scholar
  32. 32.
    Sad ME, Neurock M, Iglesia E (2011) J Am Chem Soc 133:20384CrossRefGoogle Scholar
  33. 33.
    Idem RO, Bakhshi NN (1995) Ind Eng Chem Res 34:1548CrossRefGoogle Scholar
  34. 34.
    Peppley BA, Amphlett JC, Kearns LM, Mann RF (1999) Appl Catal A 179:21CrossRefGoogle Scholar
  35. 35.
    Vishwanathan V, Jun KW, Kim JW, Roh HS (2004) Appl Catal A 276:251CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges ReserviorChongqing Three Gorges UniversityChongqingChina
  2. 2.State Key Laboratory of Coal Conversion, Institute of Coal ChemistryChinese Academy of SciencesTaiyuanChina
  3. 3.Institute of Resources and Environment EngineeringShanxi UniversityTaiyuanChina

Personalised recommendations