Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 1, pp 167–179 | Cite as

Comparison of sulfonic acid loaded mesoporous silica in transesterification of triacetin

  • Mahuya BandyopadhyayEmail author
  • Nao Tsunoji
  • Rajib Bandyopadhyay
  • Tsuneji Sano
Article
  • 51 Downloads

Abstract

Covalently linked sulfonic acid (–SO3H)-modified ordered mesoporous silicas MCM-48, MCM-41, and SBA-15 were synthesized, characterized and their catalytic activities were evaluated in the transesterification reaction of triacetin with methanol. Acid modified materials were prepared by oxidative transformation of immobilized functionalized unit, 3-mercaptopropyltriethoxysilane (MPTES) as a precursor. The mesophase and porosity of the catalysts were determined by means of X-ray diffraction and N2 adsorption techniques. No degradation of structure was observed in the preparation process. The acid concentrations were calculated using TG–DTA and NH3–TPD analysis. The acid modified materials were found to be active catalysts for the transesterification of triacetin with methanol. Especially, three-dimensional-MCM-48-SO3H showed better catalytic activity compared to its two-dimensional counterparts MCM-41 and SBA-15.

Keywords

Mesoporous silica MCM-48 Sulfonic acid Transesterification 

Supplementary material

11144_2018_1447_MOESM1_ESM.doc (1.4 mb)
Supplementary material 1 (DOC 1479 kb)

References

  1. 1.
    Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552Google Scholar
  2. 2.
    Stein A, Melde BJ, Schrodein RC (2000) Adv Mater 12:1403–1419Google Scholar
  3. 3.
    Van Rhijn WM, De Vos DE, Bossaert WD, Jacobs PA (1998) Chem Commun 3:317–318Google Scholar
  4. 4.
    Ide Y, Iwata M, Yagenji Y, Tsunoji N, Sohmiya M, Komaguchi K, Sano T, Sugahara Y (2016) J Mater Chem A 4:15829–15835Google Scholar
  5. 5.
    Ziarani GM, Badiei A, Mousavi S, Lashgari N, Shahbazi A (2012) Chin J Catal 33:1832–1839Google Scholar
  6. 6.
    Tsai CT, Pan YC, Ting CC, Vetrivel S, Chiang AST, Fey GTK, Kao HM (2009) Chem Commun 33:5018–5020Google Scholar
  7. 7.
    Mondal J, Nandi M, Modak A, Bhaumik A (2012) J Mol Catal A 254:363–364Google Scholar
  8. 8.
    Wu B, Tong Z, Yuan X (2012) J Porous Mater 19:641–647Google Scholar
  9. 9.
    Canilho N, Jacoby J, Pasc A, Carteret C, Dupire F, Stébé MJ, Blin JL (2013) Colloids Surf B 112:139–145Google Scholar
  10. 10.
    Shieh FK, Hsiao CT, Wu JW, Sue YC, Bao YL, Liu YH, Wan L, Hsu MH, Deka JR, Kao HM (2013) J Hazard Mater 260:1083–1091Google Scholar
  11. 11.
    Harmer MA, Sun Q (2001) Appl Catal A 221:45–62Google Scholar
  12. 12.
    Timofeeva MN, Panchenko VN, Hasan Z, Khan NA, Mel’gunov MS, Abel AA, Matrosova M, Volchod KP, Jhung SH (2014) Appl Catal A 469:427–433Google Scholar
  13. 13.
    Khan NA, Mishra DK, Ahmed I, Yoon JW, Hwang JS, Jhung SH (2013) Appl Catal A 452:34–38Google Scholar
  14. 14.
    Timofeeva MN (2003) Appl Catal A 256:19–35Google Scholar
  15. 15.
    Goestena MG, Juan-Alcañiz J, Ramos-Fernandez EV, Gupta KBSS, Stavitski E, Bekkum HV, Gascon J, Kapteijn F (2011) J Catal 281:177–187Google Scholar
  16. 16.
    Akiyama G, Matsuda R, Sato H, Takata M, Kitagawa S (2011) Adv Mater 23:3294–3297Google Scholar
  17. 17.
    Hasan Z, Jhung SH (2014) Eur J Inorg Chem 21:3420–3426Google Scholar
  18. 18.
    Kureshy RI, Ahmad I, Pathak K, Khan NH, Abdi SHR, Jasra RV (2009) Catal Commun 10:572–575Google Scholar
  19. 19.
    Zhang G, Zhang X, Lv J, Liu H, Qiu J, Yeung KL (2012) Catal Today 193:221–225Google Scholar
  20. 20.
    Meziani MJ, Zajac J, Jones DJ, Patyka S, Roziere J, Auroux A (2000) Langmuir 16:2262–2268Google Scholar
  21. 21.
    Brunel D, Blanc AC, Galarneau A, Fajula F (2002) Catal Today 73:139–152Google Scholar
  22. 22.
    Dias AS, Pillinger M, Valente AA (2005) J Catal 229:414–423Google Scholar
  23. 23.
    Malero JA, Stucky GD, Grieken R, Morales G (2002) J Mater Chem 12:1664–1670Google Scholar
  24. 24.
    Bandyopadhyay M, Shiju NR, Brown DR (2010) Catal Commun 11:660–664Google Scholar
  25. 25.
    Diaz I, Mohino F, Perez-Pariente J, Sastre E, Wright P, Zhou W (2001) Stud Surf Sci Catal 135:1248–1253Google Scholar
  26. 26.
    Margolese D, Melero JA, Christiansen SC, Chmelka BF, Stucky GD (2000) Chem Mater 12:2448–2459Google Scholar
  27. 27.
    Bossaert WD, De Vos DE, Van Rhijn WM, Bullen J, Grobet PJ, Jacobs PA (1999) J Catal 182:156–164Google Scholar
  28. 28.
    Bender M (1999) Bioresour Technol 70:81–87Google Scholar
  29. 29.
    Diasakou M, Louloudi A, Papayannakos N (1998) Fuel 77:1297–1302Google Scholar
  30. 30.
    Ogoshi T, Miyawaki Y (1985) J Am Oil Chem Soc 62:331–335Google Scholar
  31. 31.
    Suppes GJ, Bockwinkel K, Lucas S, Botts JB, Mason MH, Heppert JA (2001) J Am Oil Chem Soc 78:139–145Google Scholar
  32. 32.
    Kildiran G, Yucel SO, Turkay S (1996) J Am Oil Chem Soc 73:225–232Google Scholar
  33. 33.
    Nam LTH, Vinh TQ, Loan NTT, Van Tho DS, Yang X, Su B (2011) Fuel 90:1069–1075Google Scholar
  34. 34.
    Hara M (2009) Chem Sus Chem 2:109–135Google Scholar
  35. 35.
    Sharma YC, Singh B (2010) Biofuels, Bioprod Biorefin 5:69–92Google Scholar
  36. 36.
    Serio MD, Tesser R, Pengmei L, Santacesaria E (2008) Energy Fuels 22:207–217Google Scholar
  37. 37.
    Diaz I, Mohino F, Perez-Pariente J, Sastre E (2003) Appl Catal A 242:161–169Google Scholar
  38. 38.
    Alvaro M, Corma A, Das D, Fornes V, Garcia H (2005) J Catal 231:48–55Google Scholar
  39. 39.
    Mbaraka IK, Radu DR (2003) Y Lin VS, Shanks BH. J Catal 219:329–336Google Scholar
  40. 40.
    Sayari A, Hamoudi S (2001) Chem Mater 13:3151Google Scholar
  41. 41.
    Lee AF, Bennett JA, Manayil JC, Wilson K (2014) Chem Soc Rev 43:7887–7916Google Scholar
  42. 42.
    Shagufta Ahmad I, Dhar R (2017) Catal. Surv. Asia 21:53–69Google Scholar
  43. 43.
    Bandyopadhyay M, Tsunoji N, Sano T (2017) Catal Lett 147:1040–1050Google Scholar
  44. 44.
    Gies H, Grabowski S, Bandyopadhyay M, Grunert W, Tkachenko OP, Klementiev KV, Birkner A (2003) Micropor Mesopor Mater 60:31–42Google Scholar
  45. 45.
    Lesaint C, Lebeau B, Marichal C, Patarin J (2005) Micropor Mesopor Mater 83:76–84Google Scholar
  46. 46.
    Wang X, Tseng YH, Chan JCC (2007) J Phy Chem C 111:2156–2164Google Scholar
  47. 47.
    Siril PF, Davison AD, Randhawa JK, Brown DR (2007) J Mol Catal A 267:72–78Google Scholar
  48. 48.
    Yoshitake H, Yokoi T, Tatsumi T (2002) Chem Mater 14:4603–4610Google Scholar
  49. 49.
    Li Y, Zhou G, Li C, Qin D, Qiao W, Chu B (2009) Colloids Surf A 341:79–85Google Scholar
  50. 50.
    Fredman B, Pryde EH, Mounts TL (1984) J Am Oil Chem Soc 61:1638–1643Google Scholar
  51. 51.
    Silveira JQ, Vargas MD, Ronconi CM (2011) J Mater Chem 21:6034–6039Google Scholar
  52. 52.
    Molnar A (2011) Chem Rev 111:2251–2320Google Scholar
  53. 53.
    Molnar A, Papp A (2017) Coord Chem Rev 349:1–65Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Mahuya Bandyopadhyay
    • 1
    • 2
    Email author
  • Nao Tsunoji
    • 2
  • Rajib Bandyopadhyay
    • 3
  • Tsuneji Sano
    • 2
  1. 1.Institute of Infrastructure, Technology, Research and Management, IITRAMAhmedabadIndia
  2. 2.Department of Applied Chemistry, Graduate School of EngineeringHiroshima UniversityHigashi-HirosimaJapan
  3. 3.School of TechnologyPandit Deendayal Petroleum UniversityGandhinagarIndia

Personalised recommendations