Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 931–956 | Cite as

New insight into the microstructure of natural calcined laterites and their performance as heterogeneous Fenton catalyst for methylene blue degradation

  • Gloria Murielle Rostandi Kpinsoton
  • Héla Karoui
  • Yohan Richardson
  • Blédja N’dri Stéphanie Koffi
  • Hamma Yacouba
  • Julius Motuzas
  • Martin Drobek
  • Abdou Lawane Gana
Article

Abstract

In this work, natural laterites from Burkina Faso were calcined at different temperatures in the range 400–800 °C. XRD, EDS, N2 adsorption manometry and TGA–DSC analyses together with a thorough analysis of available literature data, support that the laterite sample consists mainly of goethite and hematite embedded in a framework of kaolinite and quartz with different interaction extents. During calcination up to 400 °C, the kaolinite structure is partially destroyed due to the loss of structural water and the goethite phase previously in association with the kaolinite lattice transforms into free hematite crystallites, resulting in a drop of the surface area of the composite material. At 600 °C, the kaolinite lattice is further deshydroxylated leading to an amorphous metakaolin matrix containing mainly surface hematite nanophases. Despite a substantial reduction of the surface area due to the calcination-induced shrinkage of alumino-silicate framework, the laterite calcined at 600 °C exhibits the highest performance in the methylene blue (MB) degradation by the Fenton process with a degradation percentage of 99% after 100 min of treatment at room temperature. The effects of solution pH, H2O2 concentration, initial MB concentration and catalyst dosage were investigated. A slight but significant visible-light-induced removal enhancement effect suggested a visible-light photocatalytic activity of the hematite phase. This calcined laterite demonstrates a strong catalytic stability over several utilizations therefore is worth to be seriously considered in the design of sustainable and readily affordable wastewater treatment solutions in developing tropical countries.

Keywords

Laterite Iron oxides Heterogeneous Fenton catalysts Methylene blue degradation 

Supplementary material

11144_2018_1406_MOESM1_ESM.docx (282 kb)
Supplementary material 1 (DOCX 281 kb)

References

  1. 1.
    Carmen Z, Daniela S (2012) Textile organic dyes–characteristics, polluting effects and separation/elimination procedures from industrial effluents–a critical overview. In: Puzyn T, Mostrag-Szlichtyng A (eds) Organic pollutants ten years after the Stockholm convention-environmental and analytical update. InTech, RijekaGoogle Scholar
  2. 2.
    Chergui S (2010) Dégradation des colorants textiles par procédés d’oxydation avancée basée sur la réaction de Fenton: application à la dépollution des rejets industriels. Université Paris-Est, Marne-la-ValléeGoogle Scholar
  3. 3.
    Tir M, Moulai-Mostefa N, Nedjhioui M (2015) Optimizing decolorization of methylene blue dye by electrocoagulation using Taguchi approach. Desalin. Water Treat 55:2705–2710CrossRefGoogle Scholar
  4. 4.
    Karim A, Mounir B, Hachkar M, Bakasse M, Yaacoubi A (2010) Élimination du colorant basique « Bleu de Méthylène » en solution aqueuse par l’argile de Safi. Rev Sci Eau 23:375–388.  https://doi.org/10.7202/045099ar CrossRefGoogle Scholar
  5. 5.
    Karthikeyan S, Titus A, Gnanamani A et al (2011) Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination 281:438–445.  https://doi.org/10.1016/j.desal.2011.08.019 CrossRefGoogle Scholar
  6. 6.
    Trapido M, Tenno T, Goi A et al (2017) Bio-recalcitrant pollutants removal from wastewater with combination of the Fenton treatment and biological oxidation. J Water Process Eng 16:277–282CrossRefGoogle Scholar
  7. 7.
    Pliego G, Zazo JA, Garcia-Muñoz P et al (2015) Trends in the intensification of the fenton process for wastewater treatment: an overview. Crit Rev Environ Sci Technol 45:2611–2692.  https://doi.org/10.1080/10643389.2015.1025646 CrossRefGoogle Scholar
  8. 8.
    Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5:40552–40577.  https://doi.org/10.1039/C5RA02023A CrossRefGoogle Scholar
  9. 9.
    Garrido-Ramírez EG, Theng BK, Mora ML (2010) Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions—a review. Appl Clay Sci 47:182–192.  https://doi.org/10.1016/j.clay.2009.11.044 CrossRefGoogle Scholar
  10. 10.
    He J, Yang X, Men B, Wang D (2016) Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: a review. J Environ Sci 39:97–109.  https://doi.org/10.1016/j.jes.2015.12.003 CrossRefGoogle Scholar
  11. 11.
    Kong S-H, Watts RJ, Choi J-H (1998) Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere 37:1473–1482.  https://doi.org/10.1016/S0045-6535(98)00137-4 CrossRefGoogle Scholar
  12. 12.
    Navalon S, Alvaro M, Garcia H (2010) Heterogeneous Fenton catalysts based on clays, silicas and zeolites. Appl Catal B Environ 99:1–26.  https://doi.org/10.1016/j.apcatb.2010.07.006 CrossRefGoogle Scholar
  13. 13.
    Herney-Ramirez J, Vicente MA, Madeira LM (2010) Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review. Appl Catal B Environ 98:10–26.  https://doi.org/10.1016/j.apcatb.2010.05.004 CrossRefGoogle Scholar
  14. 14.
    Matta R, Hanna K, Chiron S (2007) Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Sci Total Environ 385:242–251.  https://doi.org/10.1016/j.scitotenv.2007.06.030 CrossRefPubMedGoogle Scholar
  15. 15.
    Djeffal L, Abderrahmane S, Benzina M et al (2014) Efficient degradation of phenol using natural clay as heterogeneous Fenton-like catalyst. Environ Sci Pollut Res 21:3331–3338CrossRefGoogle Scholar
  16. 16.
    Manu B, Mahamood (2011) Degradation of paracetamol in aqueous solution by Fenton Oxidation and Photo-Fenton Oxidation processes using Iron from Laterite soil as catalyst. Int J Earth Sci Eng 4:1103–1110Google Scholar
  17. 17.
    Karale R, Manu B, Shrihari S (2013) Catalytic use of laterite iron for degradation of 2-aminopyridine using advanced oxidation processes. Int J Sci Eng Res 4:207–210Google Scholar
  18. 18.
    Khataee AR, Pakdehi SG (2014) Removal of sodium azide from aqueous solution by Fenton-like process using natural laterite as a heterogeneous catalyst: kinetic modeling based on nonlinear regression analysis. J Taiwan Inst Chem Eng 45:2664–2672.  https://doi.org/10.1016/j.jtice.2014.08.007 CrossRefGoogle Scholar
  19. 19.
    Khataee A, Salahpour F, Fathinia M et al (2015) Iron rich laterite soil with mesoporous structure for heterogeneous Fenton-like degradation of an azo dye under visible light. J Ind Eng Chem 26:129–135.  https://doi.org/10.1016/j.jiec.2014.11.024 CrossRefGoogle Scholar
  20. 20.
    Koottatep T, Phong VHN, Chapagain SK et al (2017) Potential of laterite soil coupling fenton reaction in acetaminophen (ACT) removal in constructed wetlands. Water Air Soil Pollut 228:283.  https://doi.org/10.1007/s11270-017-3454-x CrossRefGoogle Scholar
  21. 21.
    Sangami S, Manu B (2017) Synthesis of Green Iron Nanoparticles using Laterite and their application as a Fenton-like catalyst for the degradation of herbicide Ametryn in water. Environ Technol Innov 8:150–163.  https://doi.org/10.1016/j.eti.2017.06.003 CrossRefGoogle Scholar
  22. 22.
    Tardy Y (1992) Diversity and terminology of lateritic profiles. In: Mariniti IP, Chesworth W (eds) Weather soils paleosols. Elsevier, Amsterdam, pp 379–405CrossRefGoogle Scholar
  23. 23.
    Nahon D (2003) Altérations dans la zone tropicale. Signification à travers les mécanismes anciens et/ou encore actuels. Comptes Rendus Geosci 335:1109–1119CrossRefGoogle Scholar
  24. 24.
    Zhang L, Hong S, He J et al (2011) Adsorption characteristic studies of phosphorus onto laterite. Desalin. Water Treat 25:98–105.  https://doi.org/10.5004/dwt.2011.1871 CrossRefGoogle Scholar
  25. 25.
    Kenda ES, Py X, N’Tsoukpoe KE et al (2017) Thermal energy storage materials made of natural and recycled resources for CSP in West Africa. Waste Biomass Valor.  https://doi.org/10.1007/s12649-017-9904-2 CrossRefGoogle Scholar
  26. 26.
    Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2015) Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation—a review. Appl Catal B Environ 176–177:249–265.  https://doi.org/10.1016/j.apcatb.2015.04.003 CrossRefGoogle Scholar
  27. 27.
    Pouran SR, Abdul Raman AA, Wan Daud WMA (2014) Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions. J Clean Prod 64:24–35.  https://doi.org/10.1016/j.jclepro.2013.09.013 CrossRefGoogle Scholar
  28. 28.
    Liu Y, Jin W, Zhao Y et al (2017) Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl Catal B Environ 206:642–652.  https://doi.org/10.1016/j.apcatb.2017.01.075 CrossRefGoogle Scholar
  29. 29.
    Noh JS, Schwarz JA (1989) Estimation of the point of zero charge of simple oxides by mass titration. J Colloid Interface Sci 130:157–164.  https://doi.org/10.1016/0021-9797(89)90086-6 CrossRefGoogle Scholar
  30. 30.
    Herbillon A, Mestdagh M, Vielvoye L, Derouane E (1976) Iron in kaolinite with special reference to kaolinite from tropical soils. Clay Miner 11:201–220CrossRefGoogle Scholar
  31. 31.
    Mendelovici E, Yariv S, Villalba R (1979) Iron-bearing kaolinite in Venezuelan laterites: I. Infrared Spectrosc Chem Dissolut. Evid Clay Miner 14:323–331Google Scholar
  32. 32.
    Boudeulle M, Muller J-P (1988) Structural characteristics of hematite and goethite and their relationships with kaolinite in a laterite from Cameroon: a TEM study. Bull Minéralogie 111:149–166Google Scholar
  33. 33.
    Trolard F, Tardy Y (1989) A model of Fe3 + -kaolinite, Al3 + -goethite, Al3 + -hematite equilibria in laterites. Clay Miner 24:1–21CrossRefGoogle Scholar
  34. 34.
    Wei S, Tan W, Zhao W et al (2012) Microstructure, interaction mechanisms, and stability of binary systems containing goethite and kaolinite. Soil Sci Soc Am J 76:389–398CrossRefGoogle Scholar
  35. 35.
    Zhang X, Kong L, Cui X, Yin S (2016) Occurrence characteristics of free iron oxides in soil microstructure: evidence from XRD, SEM and EDS. Bull Eng Geol Environ 75:1493–1503CrossRefGoogle Scholar
  36. 36.
    Giovannini AL, Neto ACB, Porto CG et al (2017) Mineralogy and geochemistry of laterites from the Morro dos Seis Lagos Nb (Ti, REE) deposit (Amazonas, Brazil). Ore Geol Rev 88:461–480.  https://doi.org/10.1016/j.oregeorev.2017.05.008 CrossRefGoogle Scholar
  37. 37.
    Tan D, Yuan P, Annabi-Bergaya F et al (2015) Methoxy-modified kaolinite as a novel carrier for high-capacity loading and controlled-release of the herbicide amitrole. Sci Rep 5:8870CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Fan H, Song B, Li Q (2006) Thermal behavior of goethite during transformation to hematite. Mater Chem Phys 98:148–153CrossRefGoogle Scholar
  39. 39.
    Liu H, Chen T, Zou X et al (2013) Thermal treatment of natural goethite: thermal transformation and physical properties. Thermochim Acta 568:115–121CrossRefGoogle Scholar
  40. 40.
    Guo X, Li D, Park K-H et al (2009) Leaching behavior of metals from a limonitic nickel laterite using a sulfation–roasting–leaching process. Hydrometallurgy 99:144–150.  https://doi.org/10.1016/j.hydromet.2009.07.012 CrossRefGoogle Scholar
  41. 41.
    Mitra GB, Bhattacherjee S (1970) X-ray diffraction studies on the transformation of kaolinite into metakaolin. II. Study of layer shift. Acta Crystallogr B 26:2124–2128CrossRefGoogle Scholar
  42. 42.
    Maubec N (2010) Approche multi-échelle du traitement des sols à la chaux-Etudes des interactions avec les argiles. Université de Nantes, NantesGoogle Scholar
  43. 43.
    Fabbri B, Gualtieri S, Leonardi C (2013) Modifications induced by the thermal treatment of kaolin and determination of reactivity of metakaolin. Appl Clay Sci 73:2–10.  https://doi.org/10.1016/j.clay.2012.09.019 CrossRefGoogle Scholar
  44. 44.
    Sonuparlak B, Sarikaya M, Aksay IA (1987) Spinel phase formation during the 980 °C exothermic reaction in the kaolinite-to-mullite reaction series. J Am Ceram Soc 70:837–842CrossRefGoogle Scholar
  45. 45.
    Lu J, Liu S, Shangguan J et al (2013) The effect of sodium sulphate on the hydrogen reduction process of nickel laterite ore. Miner Eng 49:154–164.  https://doi.org/10.1016/j.mineng.2013.05.023 CrossRefGoogle Scholar
  46. 46.
    Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  47. 47.
    Sperinck S, Raiteri P, Marks N, Wright K (2011) Dehydroxylation of kaolinite to metakaolin-a molecular dynamics study. J Mater Chem 21:2118–2125.  https://doi.org/10.1039/C0JM01748E CrossRefGoogle Scholar
  48. 48.
    Chatterjee S, De S (2016) Application of novel, low-cost, laterite-based adsorbent for removal of lead from water: equilibrium, kinetic and thermodynamic studies. J Environ Sci Health Part A 51:193–203.  https://doi.org/10.1080/10934529.2015.1094321 CrossRefGoogle Scholar
  49. 49.
    Maji SK, Pal A, Pal T (2007) Arsenic removal from aqueous solutions by adsorption on laterite soil. J Environ Sci Health, Part A 42:453–462CrossRefGoogle Scholar
  50. 50.
    Appel C, Ma LQ, Rhue RD, Kennelley E (2003) Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma 113:77–93.  https://doi.org/10.1016/S0016-7061(02)00316-6 CrossRefGoogle Scholar
  51. 51.
    Courson C, Udron L, Świerczyński D et al (2002) Hydrogen production from biomass gasification on nickel catalysts: tests for dry reforming of methane. Catal Today 76:75–86.  https://doi.org/10.1016/S0920-5861(02)00202-X CrossRefGoogle Scholar
  52. 52.
    Kwan WP, Voelker BM (2003) Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Sci Technol 37:1150–1158CrossRefPubMedGoogle Scholar
  53. 53.
    Ausavasukhi A, Sooknoi T (2014) Catalytic activity enhancement by thermal treatment and re-swelling process of natural containing iron-clay for Fenton oxidation. J Colloid Interface Sci 436:37–40.  https://doi.org/10.1016/j.jcis.2014.08.028 CrossRefPubMedGoogle Scholar
  54. 54.
    Rozenson I, Spiro B, Zak I (1982) Transformation of iron-bearing kaolinite to iron-free kaolinite, goethite, and hematite. Clays Clay Miner 30:207–214CrossRefGoogle Scholar
  55. 55.
    Huang H-H, Lu M-C, Chen J-N (2001) Catalytic Decomposition of Hydrogen Peroxide and 2-chlorophenol with iron oxides. Water Res 35:2291–2299.  https://doi.org/10.1016/S0043-1354(00)00496-6 CrossRefPubMedGoogle Scholar
  56. 56.
    Hermanek M, Zboril R, Medrik I et al (2007) Catalytic efficiency of iron (III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 129:10929–10936CrossRefPubMedGoogle Scholar
  57. 57.
    Hsueh CL, Huang YH, Wang CC, Chen CY (2005) Degradation of azo dyes using low iron concentration of Fenton and Fenton-like system. Chemosphere 58:1409–1414.  https://doi.org/10.1016/j.chemosphere.2004.09.091 CrossRefPubMedGoogle Scholar
  58. 58.
    Mammeri L, Sehili T, Remache W, Belaidi S (2014) Natural iron oxide as a heterogeneous photo-Fenton-like catalyst for the degradation of 1-naphthol under artificial and solar light. Sci Technol A 39:91–97Google Scholar
  59. 59.
    Tabet D, Saidi M, Houari M et al (2006) Fe-pillared clay as a Fenton-type heterogeneous catalyst for cinnamic acid degradation. J Environ Manag 80:342–346.  https://doi.org/10.1016/j.jenvman.2005.10.003 CrossRefGoogle Scholar
  60. 60.
    Catrinescu C, Teodosiu C, Macoveanu M et al (2003) Catalytic wet peroxide oxidation of phenol over Fe-exchanged pillared beidellite. Water Res 37:1154–1160.  https://doi.org/10.1016/S0043-1354(02)00449-9 CrossRefPubMedGoogle Scholar
  61. 61.
    Ghanizadeh G, Asgari G (2011) Adsorption kinetics and isotherm of methylene blue and its removal from aqueous solution using bone charcoal. Reac Kinet Mech Cat 102:127–142.  https://doi.org/10.1007/s11144-010-0247-2 CrossRefGoogle Scholar
  62. 62.
    Azmi NHM, Vadivelu VM, Hameed BH (2014) Iron-clay as a reusable heterogeneous Fenton-like catalyst for decolorization of Acid Green 25. Desalin. Water Treat 52:5583–5593.  https://doi.org/10.1080/19443994.2013.814009 CrossRefGoogle Scholar
  63. 63.
    Ramirez JH, Costa CA, Madeira LM et al (2007) Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Appl Catal B Environ 71:44–56.  https://doi.org/10.1016/j.apcatb.2006.08.012 CrossRefGoogle Scholar
  64. 64.
    Khankhasaeva ST, Dambueva DV, Dashinamzhilova ET et al (2015) Fenton degradation of sulfanilamide in the presence of Al, Fe-pillared clay: catalytic behavior and identification of the intermediates. J Hazard Mater 293:21–29.  https://doi.org/10.1016/j.jhazmat.2015.03.038 CrossRefPubMedGoogle Scholar
  65. 65.
    Liu G, Zhou J, Wang J et al (2015) Reductive Decolorization of Azo Dye by Bacteria. In: Singh NS (ed) Microbial degradation of synthetic dyes in wastewaters. Springer, Cham, pp 111–133Google Scholar
  66. 66.
    Lente G (2015) Deterministic kinetics in chemistry and systems biology: the dynamics of complex reaction networks. Springer, BerlinCrossRefGoogle Scholar
  67. 67.
    Ahmed Y, Yaakob Z, Akhtar P (2016) Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal Sci Technol 6:1222–1232.  https://doi.org/10.1039/C5CY01494H CrossRefGoogle Scholar
  68. 68.
    Xu X-R, Li H-B, Wang W-H, Gu J-D (2004) Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere 57:595–600.  https://doi.org/10.1016/j.chemosphere.2004.07.030 CrossRefPubMedGoogle Scholar
  69. 69.
    Scheeren CW, Paniz JNG, Martins AF (2002) Comparison of advanced processes on the oxidation of acid orange 7 dye. J Environ Sci Health Part A 37:1253–1261CrossRefGoogle Scholar
  70. 70.
    Liao C-H, Kang S-F, Hung H-P (1999) Simultaneous removal of cod and color from dye manufacturing process wastewater using Photo-Fenton oxidation process. J Environ Sci Health Part A 34:989–1012CrossRefGoogle Scholar
  71. 71.
    Lucas MS, Peres JA (2007) Degradation of Reactive Black 5 by Fenton/UV-C and ferrioxalate/H 2 O 2/solar light processes. Dyes Pigm 74:622–629CrossRefGoogle Scholar
  72. 72.
    Grčić I, Papić S, Žižek K, Koprivanac N (2012) Zero-valent iron (ZVI) Fenton oxidation of reactive dye wastewater under UV-C and solar irradiation. Chem Eng J 195–196:77–90.  https://doi.org/10.1016/j.cej.2012.04.093 CrossRefGoogle Scholar
  73. 73.
    Feng J, Hu X, Yue PL (2004) Discoloration and mineralization of orange II using different heterogeneous catalysts containing Fe: a comparative study. Environ Sci Technol 38:5773–5778.  https://doi.org/10.1021/es049811j CrossRefPubMedGoogle Scholar
  74. 74.
    Tekbaş M, Yatmaz HC, Bektaş N (2008) Heterogeneous photo-Fenton oxidation of reactive azo dye solutions using iron exchanged zeolite as a catalyst. Microporous Mesoporous Mater 115:594–602.  https://doi.org/10.1016/j.micromeso.2008.03.001 CrossRefGoogle Scholar
  75. 75.
    Komtchou S, Dirany A, Drogui P et al (2017) Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes. Water Res 125:91–103.  https://doi.org/10.1016/j.watres.2017.08.036 CrossRefPubMedGoogle Scholar
  76. 76.
    Legrini O, Oliveros E, Braun AM (1993) Photochemical processes for water treatment. Chem Rev 93:671–698.  https://doi.org/10.1021/cr00018a003 CrossRefGoogle Scholar
  77. 77.
    Malato S, Fernández-Ibáñez P, Maldonado MI et al (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147:1–59.  https://doi.org/10.1016/j.cattod.2009.06.018 CrossRefGoogle Scholar
  78. 78.
    Cao Z, Qin M, Jia B et al (2017) Facile synthesis of mesoporous hematite/carbon nanosheet for superior photodegradation. J Phys Chem Solids 107:42–49.  https://doi.org/10.1016/j.jpcs.2017.02.017 CrossRefGoogle Scholar
  79. 79.
    Ndounla J, Spuhler D, Kenfack S et al (2013) Inactivation by solar photo-Fenton in pet bottles of wild enteric bacteria of natural well water: absence of re-growth after one week of subsequent storage. Appl Catal B Environ 129:309–317.  https://doi.org/10.1016/j.apcatb.2012.09.016 CrossRefGoogle Scholar
  80. 80.
    Quansah DA, Adaramola MS, Mensah LD (2016) Solar photovoltaics in sub-Saharan Africa—addressing barriers, unlocking potential. Energy Procedia 106:97–110.  https://doi.org/10.1016/j.egypro.2016.12.108 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Gloria Murielle Rostandi Kpinsoton
    • 1
    • 2
  • Héla Karoui
    • 1
  • Yohan Richardson
    • 2
  • Blédja N’dri Stéphanie Koffi
    • 1
  • Hamma Yacouba
    • 3
  • Julius Motuzas
    • 4
  • Martin Drobek
    • 5
  • Abdou Lawane Gana
    • 6
  1. 1.Laboratoire Eau Dépollution Ecosystème et Santé (LEDES)Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE)Ouagadougou 01Burkina Faso
  2. 2.Laboratoire Biomasse Energie et Biocarburants (LBEB)Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE)Ouagadougou 01Burkina Faso
  3. 3.Laboratoire Hydrologie et Ressources en Eau (LEAH)Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE)Ouagadougou 01Burkina Faso
  4. 4.FIM2Lab – Functional Interfacial Materials and Membranes, School of Chemical EngineeringThe University of QueenslandBrisbaneAustralia
  5. 5.Institut Européen des MembranesUMR 5635, Université de Montpellier, ENSCM, CNRSMontpellier Cedex 5France
  6. 6.Laboratoire Eco-matériaux de Construction (LEMC)Institut International d’Ingénierie de l’Eau et de l’Environnement (2iE)Ouagadougou 01Burkina Faso

Personalised recommendations