Preparation, characterization of highly active recyclable zirconium and tin tungstate catalysts and their application in Pechmann condensation reaction

Article
  • 15 Downloads

Abstract

In this contribution, a facile and efficient one-step method for the preparation of mesoporous zirconium and tin tungstate with different Zr or Sn:W molar ratios. The prepared catalysts were characterized by different textural and spectroscopic techniques such as XRD, Raman spectra, SEM, EDX, TEM and N2 adsorption–desorption at − 196 °C. The surface acidity was measured by nonaqueous potentiometric titration of n-butylamine and FTIR spectra of chemisorbed pyridine. XRD results showed that all the prepared samples calcined at 400 °C are amorphous, no evidence for formation of big aggregates of WOx species on the catalyst surfaces, but all WOx species are homogeneously dispersed as small particles on the surfaces. At higher ratio of W (ZrW3 and SnW3) the excess WOx species are distributed inside the pores or block the pores by covering the necks of the pores, which leads to decrease in the specific area as evident from N2 adsorption- desorption study. Raman spectra showed that the tungstate species has WO4 distorted tetrahedral structure. The surface acidity measurement showed that the catalysts contain mixture of Lewis and Brønsted acid sites with different ratios, the maximum B/L ratio reach maximum value at molar ratio 1:2 (ZrW2 and SnW2). The results showed that zirconium tungstate samples have higher surface acidities than tin tungstate samples. The prepared catalysts showed high catalytic activities for the synthesis of 7-hydroxy-4-methyl coumarin via the Pechmann condensation reaction of resorcinol with ethyl acetoacetate. High yield (~ 94%) with 100% selectivity of 7-hydroxy-4-methyl coumarin was obtained under solvent free conditions.

Keywords

Zirconium tungstate Tin tungstate Pechmann condensation Solid acid 7-Hydroxy-4-methyl coumarin 

Supplementary material

11144_2018_1400_MOESM1_ESM.docx (6.9 mb)
Supplementary material 1 (DOCX 7046 kb)

References

  1. 1.
    Liu Y, Guan Y, Li C, Lian J, Gan GJ, Lim EC, Kooli F (2006) J. Catal. 244:17CrossRefGoogle Scholar
  2. 2.
    Rosenberg DJ, Bachiller-Baeza B, Dines TJ, Anderson JA (2003) J Phys. Chem. B 107:6526CrossRefGoogle Scholar
  3. 3.
    Khder AS, Ahmed SA, Altass HM (2016) Reac. Kinet. Mech. Cat. 117:745CrossRefGoogle Scholar
  4. 4.
    Sharma P, Vyas S, Patel A (2004) J Mol Catal A: Chem 214:281CrossRefGoogle Scholar
  5. 5.
    Arata K (1996) Appl. Cata Gen. 146:3CrossRefGoogle Scholar
  6. 6.
    Doble M, Kruthiventi AK (2006) Green Chemistry and Engineering. Academic Press, New YorkGoogle Scholar
  7. 7.
    Arata K (2009) Preparation of superacidic metal oxides and their catalytic action. In: Jackson SD, Hargreaves JSJ (eds) Metal Oxide Catalysis. Wiley-VCH, Weinheim, p 665Google Scholar
  8. 8.
    Tanabe K (1981) Solid acid and base catalysts. In: Anderson JR, Boudart M (eds) Catalysis Science and Technology. Springer Verlag, Berlin Heidelberg and New York, p 231Google Scholar
  9. 9.
    Lamine N, Benadda A, Djadoun A, Barama A, Blanchard J (2016) J Mol Catal A: Chem 425:157CrossRefGoogle Scholar
  10. 10.
    Fernandes DR, Rocha AS, Mai EF, Mota CJA, da Silva VT (2012) Appl. Catal. A: Gen. 425:199CrossRefGoogle Scholar
  11. 11.
    Zheng A, Zhang HL, Chen L, Yue Y, Ye CH, Deng F (2007) J. Phys. Chem. B 111:3085CrossRefGoogle Scholar
  12. 12.
    Hino M, Takasaki S, Furuta S, Matsuhashi M, Arata K (2007) Appl. Catal. A: Gen. 321:147CrossRefGoogle Scholar
  13. 13.
    Arata K, Nakamora H, Shouyi M (2000) Appl. Catal. A: Gen. 197:213CrossRefGoogle Scholar
  14. 14.
    Khder AS (2008) Appl. Catal. A: Gen. 343:109CrossRefGoogle Scholar
  15. 15.
    Khder AS, El-Sharkawy EA, El-Hakam SA, Ahmed AI (2008) Catal Commun 9:769CrossRefGoogle Scholar
  16. 16.
    Khder AS, Ahmed AI (2009) Appl. Catal. A: Gen. 354:153CrossRefGoogle Scholar
  17. 17.
    Wittig G, Hagg W (1955) Chem Ber 88:1654CrossRefGoogle Scholar
  18. 18.
    Mahajan RP, Patil SL, Raghao Malip S (2005) Chem. Inform. 36:286Google Scholar
  19. 19.
    Shriner RL (1942) Org. React. 1:1Google Scholar
  20. 20.
    Bose AK, Pednekar S, Ganguly SN, Chakraborthy G (2004) Tetrahedron Lett 45:8351CrossRefGoogle Scholar
  21. 21.
    Singh PR, Singh DU, Samant SD (2004) Synlett 11:1909Google Scholar
  22. 22.
    Parida KM, Rath D (2009) Mole. Catal. A: Chem. 310:93CrossRefGoogle Scholar
  23. 23.
    Song A, Wang X, Lam KS (2003) Terahedron Lett. 44:1755CrossRefGoogle Scholar
  24. 24.
    Perkin WH, Henry W Sr (1875) J. Chem. Soc. 28:10CrossRefGoogle Scholar
  25. 25.
    Singer LA, Kong NP (1966) J. Am. Chem. Soc. 88:5213CrossRefGoogle Scholar
  26. 26.
    Kennedy O, Thornes RD (1997) Coumarins: Biology Applications and Mode of Action. Wiley, New JerseyGoogle Scholar
  27. 27.
    Zahradnik M (1990) The Production and Application of Fluorescent Brightening Agents. Wiley, New YorkGoogle Scholar
  28. 28.
    Murray RDH, Mendez J, Brown SA (1982) The Natural Coumarins: Occurrence Chemistry and Biochemistry. Wiley, New YorkGoogle Scholar
  29. 29.
    Horning EC (1955) Organic Synthesis. Wiley, New York, p 281Google Scholar
  30. 30.
    Russell A, Frye JR (1941) Org. Synth. 21:22CrossRefGoogle Scholar
  31. 31.
    Khder AS, Hassan HMA, El-Shall MS (2012) Appl. Catal. A: Gen. 411:77CrossRefGoogle Scholar
  32. 32.
    Khder AERS, Hassan MA, El-Shall MS (2014) Appl. Catal. A: Gen. 487:110CrossRefGoogle Scholar
  33. 33.
    Ravindran TR, Arora AK, Sastry VS, Ch Sahu P (2009) J Non-Cryst Solids 355:2289CrossRefGoogle Scholar
  34. 34.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl. Chem. 57:603CrossRefGoogle Scholar
  35. 35.
    Barton DG, Soled SL, Meitzner GD, Fuentes GA, Iglesia E (1999) J. Catal. 181:57CrossRefGoogle Scholar
  36. 36.
    Reddy BM, Sreekanth PM, Reddy VR (2005) J. Mol. Catal. A:Gen. 225:71CrossRefGoogle Scholar
  37. 37.
    Zhang F, Zheng S, Xiao Q, Zhong Y, Zhu W, Lin A, El-Shall MS (2016) Green Chem. 18:2900CrossRefGoogle Scholar
  38. 38.
    Ross-Medgaarden EI, Knowles WV, Kim T, Wong MS, Zhou W, Kiely CJ, Wachs IE (2008) J. Catal. 256:108CrossRefGoogle Scholar
  39. 39.
    Wongmaneenil P, Jongsomjit B, Praserthdam P (2009) Catal. Commum. 10:1079CrossRefGoogle Scholar
  40. 40.
    Yamamura Y, Nakajima N, Tsuji T, Koyano M, Iwasa Y, Katayama S, Saito K, Sorai M (2002) Phys. Rev. 66:014301CrossRefGoogle Scholar
  41. 41.
    Huang R, Ge H, Lin X, Guo Y, Yuan R, Fua X, Li Z (2013) RSC Adv. 3:1235CrossRefGoogle Scholar
  42. 42.
    Zhou C, Zhang Q, Zhang M, Wu G (2017) J. Alloy Compd. 718:356CrossRefGoogle Scholar
  43. 43.
    Guo XY, Fan CZ, Liu XS, Song WB, Cheng CX, Liang EJ, Chao MJ, Yuan B (2012) Adv. Mater. Res. 535–537:42Google Scholar
  44. 44.
    Ravindran TR, Arora AK, Mary TA (2001) J Phys: Condens Matter 13:11573Google Scholar
  45. 45.
    Liang EJ, Wang SH, Wu TA, Chao MJ, Yuan B, Zhang WF (2007) J. Raman Spectrosc. 38:1186CrossRefGoogle Scholar
  46. 46.
    Liang EJ, Liang Y, Zhao Y, Liu J, Jiang YJ (2008) J. Phys. Chem. A 112:12582CrossRefGoogle Scholar
  47. 47.
    Evans JSO, Mary TA, Vogt T, Subramanian MA, Sleight AW (1996) Chem. Mater. 8:2809CrossRefGoogle Scholar
  48. 48.
    Hardcastle FD, Wachs IE (1995) J. Raman Spectrosc. 26:397CrossRefGoogle Scholar
  49. 49.
    Rao KN, Reddy KM, Lingaiah N, Suryanarayana I, Sai PS, Prasad J (2006) Appl Catal A: Gen 300:139CrossRefGoogle Scholar
  50. 50.
    Romanelli GP, Autino JC, Blanco MN, Pizzio LR (2005) Appl. Catal. A: Gen. 295:209CrossRefGoogle Scholar
  51. 51.
    Altass HM, Khder AERS (2016) J. Mole. Catal. A: Chem. 411:138CrossRefGoogle Scholar
  52. 52.
    Cid R, Pecci G (1985) Appl. Catal. A: Gen. 14:15CrossRefGoogle Scholar
  53. 53.
    Lopez EF, Escribano S, Panizza M, Carnasciali MM, Busca G (2011) J. Mater. Chem. 11:1891CrossRefGoogle Scholar
  54. 54.
    Yadav GD, Ajgaonkar NP, Varma A (2012) J Catal 292:99CrossRefGoogle Scholar
  55. 55.
    Li S, Qi X, Huang B (2016) Catal. Today 276:139CrossRefGoogle Scholar
  56. 56.
    Ahmed AI, El-Hakam SA, Khder AS, Abo El-Yazeed WS (2013) Mole. Catal. A: Chem. 366:99CrossRefGoogle Scholar
  57. 57.
    Palaniappan S, Shekhar RC (2004) J. Mol. Catal A: Chem. 209:117CrossRefGoogle Scholar
  58. 58.
    Tyagi B, Mishra MK, Jasra RV (2007) J. Mol. Catal A: Chem. 276:47CrossRefGoogle Scholar
  59. 59.
    Sinhamahapatra A, Sutradhar N, Pahari S, Bajaj HC, Panda AB (2011) Appl. Catal. A: Gen. 394:93CrossRefGoogle Scholar
  60. 60.
    Calvino-Casilda V, Bañares MA (2010) Catal. Today 155:279CrossRefGoogle Scholar
  61. 61.
    Selvakumar S, Chidambaram M, Singh AP (2007) Catal. Comm. 8:777CrossRefGoogle Scholar
  62. 62.
    Maheswara M, Siddaiah V, Damu GL, Rao V (2006) J. Mole. Catal. A: Chem. 255:49CrossRefGoogle Scholar
  63. 63.
    Sharma RK, Monga Y, Puri A (2013) Catal. Comm. 35:110CrossRefGoogle Scholar
  64. 64.
    Khder AERS, Ahmed SA, Khairou KS, Altass HM (2017) J. Porous Mater.  https://doi.org/10.1007/s10934-017-0414-1 Google Scholar
  65. 65.
    Sudha S, Venkatachalam K, Vishnu Priya S, Mabel JH, Palanichamy M, Murugesan V (2008) J. Mol. Catal. A: Chem. 291:22CrossRefGoogle Scholar
  66. 66.
    Reddy BM, Patil MK, Lakshmanan P (2006) Mole. Catal. A: Chem. 256:290CrossRefGoogle Scholar
  67. 67.
    Vijayakumar B, Ranga Rao G (2012) J. Porous Mater. 19:233CrossRefGoogle Scholar
  68. 68.
    Bouasla S, Amaro-Gahete J, Esquivel D, López MI, Jiménez-Sanchidrián C, Teguiche M, Romero-Salguero FJ (2017) Molecules 22:2072CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Chemistry Department, Faculty of Applied ScienceUmm Al Qura UniversityMakkahSaudi Arabia
  2. 2.Chemistry Department, Faculty of ScienceMansoura UniversityMansouraEgypt

Personalised recommendations