Hydrogenolysis of glycerol to 1,3-propanediol over Li2B4O7-modified tungsten–zirconium composite oxides supported platinum catalyst
- 194 Downloads
Abstract
A series of Pt–yLi2B4O7/WOx/ZrO2 (y = 0, 0.5, 1, 2 wt%) catalysts were prepared by varying the content of Li2B4O7 through the method of coimpregnation-calcination. The obtained catalysts were used for the selective hydrogenolysis of glycerol to 1,3-propanediol. Meanwhile, these catalysts were characterized by N2 adsorption and desorption (BET), CO chemisorption, X-ray diffraction (XRD), NH3-temperature programmed desorption (NH3-TPD), H2-temperature programmed reduction (H2-TPR), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The results showed that Pt–1Li2B4O7/WOx/ZrO2 achieved the highest activity with glycerol conversion of 90.7% at 150 °C and 4 MPa and exhibited excellent stability over 200 h. Pt/WOx/ZrO2 catalyst modified with Li2B4O7 was able to enhance catalytic activity and stability, since Li2B4O7 promoted the dispersion of Pt, increased the acid amount of the catalyst and strengthened the interaction between active components and support.
Keywords
Glycerol hydrogenolysis 1,3-Propanediol Tungsten and zirconium composite oxides Li2B4O7 StabilityNotes
Acknowledgements
Financial support by the Research and Development of Prospective Research Project of Jiangsu Province, China (BY2015005-08) is gratefully acknowledged.
References
- 1.Wang YL, Zhou JX, Guo XW (2015) RSC Adv 5:74611–74628CrossRefGoogle Scholar
- 2.Zhu SH, Zhu YL, Hao SL, Zheng HY, Mo T, Li YW (2012) Green Chem 14:2607–2616CrossRefGoogle Scholar
- 3.Ruppert AM, Weinberg K, Palkovits R (2012) Angew Chem 51:2564–2601CrossRefGoogle Scholar
- 4.Boffito DC, Neagoe C, Edake M, Pastor-Ramirez B, Patience GS (2014) Catal Today 237:13–17CrossRefGoogle Scholar
- 5.Nakagawa Y, Tomishige K (2011) Catal Sci Technol 1:179–190CrossRefGoogle Scholar
- 6.Liu LJ, Zhang YH, Wang AQ, Zhang T (2012) Chin J Catal 33:1257–1261CrossRefGoogle Scholar
- 7.Nakagawa Y, Shinmi Y, Koso S, Tomishige K (2010) J Catal 272:191–194CrossRefGoogle Scholar
- 8.Lee CS, Aroua MK, Daud WMAW, Cognet P, Pérès-Lucchese Y, Fabre PL, Reynes O, Latapie L (2015) Renew Sust Energy Rev 42:963–972CrossRefGoogle Scholar
- 9.Zhang YH, Zhao X-C, Wang Y, Zhou LK, Zhang JY, Wang J, Wang AQ, Zhang T (2013) J Mater Chem A 1:3724–3732CrossRefGoogle Scholar
- 10.Zheng SN, Zhu KN, Li W, Ji Y (2017) New J Chem 41:5752–5763CrossRefGoogle Scholar
- 11.Kurian JV (2005) J Polym Environ 13:159–167CrossRefGoogle Scholar
- 12.Mizugaki T, Yamakawa T, Arundhathi R, Mitsudome T, Jitsukawa K, Kaneda K (2012) Chem Lett 41:1720–1722CrossRefGoogle Scholar
- 13.Priya SS, Bhanuchander P, Kumar VP, Bhargava SK, Chary KVR (2016) Ind Eng Chem Res 55:4461–4472CrossRefGoogle Scholar
- 14.Ding TM, Tian HS, Zhao BQ (2016) React Kinet Mech Cat 118:497–508CrossRefGoogle Scholar
- 15.García-Fernández S, Gandarias I, Requies J, Soulimani F, Arias PL, Weckhuysen BM (2017) Appl Catal B Environ 204:260–272CrossRefGoogle Scholar
- 16.Kurosaka T, Maruyama H, Naribayashi I, Sasaki Y (2008) Catal Commun 9:1360–1363CrossRefGoogle Scholar
- 17.Fan YQ, Cheng SJ, Wang H, Ye DH, Xie SH, Pei Y, Hu HR, Hua WM, Li ZH, Qiao MH, Zong BN (2017) Green Chem 19:2174–2183CrossRefGoogle Scholar
- 18.Wang J, Lei N, Yang CJ, Su Y, Zhao XC, Wang AQ (2016) Chin J Catal 37:1513–1519CrossRefGoogle Scholar
- 19.Priya SS, Kumar VP, Kantam ML, Bhargava SK, Chary KVR (2014) Catal Lett 144:2129–2143CrossRefGoogle Scholar
- 20.Zhu SH, Zhu YL, Hao SL, Chen LG, Zhang B, Li YW (2012) Catal Lett 142:267–274CrossRefGoogle Scholar
- 21.Qin L-Z, Song M-J, Chen C-L (2010) Green Chem 12:1466–1472CrossRefGoogle Scholar
- 22.Edake M, Dalil M, Darabi Mahboub MJ, Dubois J-L, Patience GS (2017) RSC Adv 7:3853–3860CrossRefGoogle Scholar
- 23.García-Fernández S, Gandarias I, Tejido-Núñez Y, Requies J, Arias PL (2017) ChemCatChem 24:4508–4519CrossRefGoogle Scholar
- 24.Zhu SH, Gao XQ, Zhu YL, Li YW (2015) J Mol Catal A Chem 398:391–398CrossRefGoogle Scholar
- 25.Oh J, Dash S, Lee H (2011) Green Chem 13:2004–2007CrossRefGoogle Scholar
- 26.Pamphile-Adrián AJ, Florez-Rodriguez PP, Pires MHM, Perez G, Passos FB (2017) Catal Today 289:302–308CrossRefGoogle Scholar
- 27.Deng CH, Duan XZ, Zhou JH, Zhou XG, Yuan WK, Scott SL (2015) Catal Sci Technol 5:1540–1547CrossRefGoogle Scholar
- 28.Nakagawa Y, Ning X, Amada Y, Tomishige K (2012) Appl Catal A Gen 433–434:128–134CrossRefGoogle Scholar
- 29.Luo WT, Lyu Y, Gong LF, Du H, Wang T, Ding YJ (2016) RSC Adv 6:13600–13608CrossRefGoogle Scholar
- 30.Huang L, Zhu YL, Zheng HY, Ding GQ, Li YW (2009) Catal Lett 131:312–320CrossRefGoogle Scholar
- 31.Feng YH, Yin HB, Wang AL, Shen LQ, Yu LB, Jiang TS (2011) Chem Eng J 168:403–412CrossRefGoogle Scholar
- 32.Geng GL, Wei RP, Liang T, Zhou MH, Xiao GM (2015) React Kinet Mech Cat 117:239–251CrossRefGoogle Scholar
- 33.Niu L, Wei RP, Li C, Gao LJ, Zhou MH, Jiang F, Xiao GM (2015) React Kinet Mech Cat 115:377–388CrossRefGoogle Scholar
- 34.Zhou JX, Guo LY, Guo XW, Mao JB, Zhang SG (2010) Green Chem 12:1835–1843CrossRefGoogle Scholar
- 35.Zhu SH, Qiu YA, Zhu YL, Hao SL, Zheng HY, Li YW (2013) Catal Today 212:120–126CrossRefGoogle Scholar
- 36.García-Fernández S, Gandarias I, Requies J, Güemez MB, Bennici S, Auroux A, Arias PL (2015) J Catal 323:65–75CrossRefGoogle Scholar
- 37.Fan YQ, Cheng SJ, Wang H, Tian J, Xie SH, Pei Y, Qiao MH, Zong BN (2017) Appl Catal B Environ 217:331–341CrossRefGoogle Scholar
- 38.Luo WT, Lyu Y, Gong LF, Du H, Jiang M, Ding YJ (2016) React Kinet Mech Cat 118:481–496CrossRefGoogle Scholar
- 39.Arundhathi R, Mizugaki T, Mitsudome T, Jitsukawa K, Kaneda K (2013) ChemSusChem 6:1345–1347CrossRefPubMedGoogle Scholar
- 40.Zhu SH, Gao XQ, Zhu YL, Zhu YF, Xiang XM, Hu CX, Li YW (2013) Appl Catal B Environ 140–141:60–67CrossRefGoogle Scholar
- 41.Zhu SH, Gao XQ, Zhu YL, Cui JL, Zheng HY, Li YW (2014) Appl Catal B Environ 158–159:391–399CrossRefGoogle Scholar
- 42.Zhu SH, Gao XQ, Zhu YL, Zhu YF, Zheng HY, Li YW (2013) J Catal 303:70–79CrossRefGoogle Scholar
- 43.Checa M, Marinas A, Marinas JM, Urbano FJ (2015) Appl Catal A Gen 507:34–43CrossRefGoogle Scholar
- 44.Xiong HF, Schwartz TJ, Andersen NI, Dumesic JA, Datye AK (2015) Angew Chem 54:7939–7943CrossRefGoogle Scholar
- 45.Pham HN, Anderson AE, Johnson RL, Schwartz TJ, O’Neill BJ, Duan P, Schmidt-Rohr K, Dumesic JA, Datye AK (2015) ACS Catal 5:4546–4555CrossRefGoogle Scholar
- 46.Robertson DS, Young IM (1982) J Mater Sci 17:1729–1738CrossRefGoogle Scholar
- 47.Mohandoss R, Dhanuskodi S, Renganathan B, Sastikumar D (2013) Curr Appl Phys 13:957–963CrossRefGoogle Scholar
- 48.Ozdemir A, Altunal V, Kurt K, Depci T, Yu Y, Lawrence Y, Nur N, Guckan V, Yegingil Z (2017) Radiat Phys Chem 141:352–362CrossRefGoogle Scholar
- 49.Celik MG, Yilmaz A, Yazici AN (2017) Radiat Meas 102:16–26CrossRefGoogle Scholar
- 50.Barton DG, Soled SL, Iglesia E (1998) Top Catal 6:87–99CrossRefGoogle Scholar
- 51.Hadjiivanov K, Lukinskas P, Knözinger H (2002) Catal Lett 82:73–77CrossRefGoogle Scholar
- 52.Xi YJ, Zhang QF, Cheng HS (2013) J Phys Chem C 118:494–501CrossRefGoogle Scholar
- 53.Ebitani K, Hattori H (1991) B Chem Soc Jpn 64:2422–2427CrossRefGoogle Scholar
- 54.Zhigadlo ND, Zhang M, Salje EKH (2001) J Phys Condens Mat 13:6551–6561CrossRefGoogle Scholar
- 55.Priya SS, Bhanuchander P, Kumar VP, Dumbre DK, Periasamy SR, Bhargava SK, Lakshmi Kantam M, Chary KVR (2016) ACS Sustain Chem Eng 4:1212–1222CrossRefGoogle Scholar
- 56.Gong LF, Lu Y, Ding YJ, Lin RH, Li JW, Dong WD, Wang T, Chen WM (2010) Appl Catal A Gen 390:119–126CrossRefGoogle Scholar
- 57.Nimlos MR, Blanksby SJ, Qian XH, Himmel ME, Johnson DK (2006) J Phys Chem A 110:6145–6156CrossRefPubMedGoogle Scholar
- 58.Triwahyono S, Yamada T, Hattori H (2003) Appl Catal A Gen 242:101–109CrossRefGoogle Scholar