Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 603–617 | Cite as

Influence of calcination temperature on the plate-type V2O5–MoO3/TiO2 catalyst for selective catalytic reduction of NO

  • Li Huang
  • Yuhao Zong
  • Hu WangEmail author
  • Qian Li
  • Tao Chen
  • Lin Dong
  • Weixin Zou
  • Kai Guo


A series of plate-type V2O5–MoO3/TiO2 catalysts for selective catalytic reduction (SCR) of NO from flue gas were prepared and calcined at different temperatures. XRD, XRF, N2-adsorption, Raman, H2-TPR, NH3-TPD and XPS were used to characterize the catalysts. From the experimental results, plate-type V2O5–MoO3/TiO2 catalyst calcined at 500 °C showed the best performance in the SCR of NO. Compared with the catalyst calcined at 440 °C, the calcination in the range of 500–620 °C resulted in an increase of polymeric vanadate and the augmentation of catalytic acidity. Furthermore, the V4/V5+, (V4+ + V3+)/V5+ and Oα/(Oα + Oβ) ratio of the catalysts also increased with the increase of calcination temperature, which resulted in the high catalytic efficiency in the SCR reaction. However, the higher calcination temperature would lead to the inevitable formation of N2O at high reaction temperatures (> 370 °C). Meanwhile, high calcination temperature resulted in decreased mechanical strength of the catalyst.


NOx SCR Calcination temperature Plate-type 



The authors are grateful to the financial supports of the Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province of China (Grant No. BA2017095).

Supplementary material

11144_2018_1378_MOESM1_ESM.docx (735 kb)
Supplementary material 1 (DOCX 734 kb)


  1. 1.
    Sounak R, Hegde MS, Giridhar M (2009) Catalysis for NOx abatement. Appl Energy 86:2283–2297CrossRefGoogle Scholar
  2. 2.
    Liu YM, Shu H, Xu QS, Zhang YH, Yang LJ (2015) FT-IR study of the SO2 oxidation behavior in the selective catalytic reduction of NO with NH3 over commercial catalysts. J Fuel Chem Technol 43:1018–1024CrossRefGoogle Scholar
  3. 3.
    Qiu MY, Zhan SH, Zhu DD, Yu HB, Shi Q (2015) NH3-SCR performance improvement of mesoporous Sn modified Cr–MnOx catalysts at low temperatures. Catal Today 258:103–111CrossRefGoogle Scholar
  4. 4.
    Yu WC, Wu XD, Si ZC, Weng D (2013) Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5–WO3/TiO2 catalyst. Appl Surf Sci 283:209–214CrossRefGoogle Scholar
  5. 5.
    Kwon DW, Park KH, Hong SC (2016) Enhancement of SCR activity and SO2 resistance on VOx/TiO2 catalyst by addition of molybdenum. Chem Eng J 284:315–324CrossRefGoogle Scholar
  6. 6.
    Luca L, Isabella N, Gianguido R, Lorenzo DA, Guido B, Elio G, Pio F, Fiorenzo B (1999) Characterization and reactivity of V2O5–MoO3/TiO2 De-NOx SCR catalysts. J Catal 187:419–435CrossRefGoogle Scholar
  7. 7.
    Zhang SL, Zhong Q (2013) Promotional effect of WO3 on O2− over V2O5/TiO2 catalyst for selective catalytic reduction of NO with NH3. J Mol Catal A 373:108–113CrossRefGoogle Scholar
  8. 8.
    Larrubia MA, Busca G (2001) An ultraviolet-visible-near infrared study of the electronic structure of oxide-supported vanadia-tungsta and vanadia-molybdena. Mater Chem Phys 72:337–346CrossRefGoogle Scholar
  9. 9.
    Koh HL, Park HK (2013) Characterization of MoO3–V2O5/Al2O3 catalysts for selective catalytic reduction of NO by NH3. J Ind Eng Chem 19:73–79CrossRefGoogle Scholar
  10. 10.
    Chen L, Li JH, Ge MF (2009) Promotional Effect of Ce-doped V2O5–WO3/TiO2 with low vanadium loadings for selective catalytic reduction of NOx by NH3. J Phys Chem 113:21177–21184Google Scholar
  11. 11.
    Shi AJ, Wang XQ, Yu T, Shen MQ (2011) The effect of zirconia additive on the activity and structure stability of V2O5/WO3–TiO2 ammonia SCR catalysts. Appl Catal B 106(359–36):9Google Scholar
  12. 12.
    Zhang QM, Song CL, Lv G, Bin F, Pang HT, Song JO (2015) Effect of metal oxide partial substitution of V2O5 in V2O5–WO3/TiO2 on selective catalytic reduction of NO with NH3. J Ind Eng Chem 24:79–86CrossRefGoogle Scholar
  13. 13.
    Zhang YP, Guo WQ, Wang LF, Song M, Yang LJ, Shen K, Xu HT, Zhou CC (2015) Characterization and activity of V2O5–CeO2/TiO2–ZrO2 catalysts for NH3-selective catalytic reduction of NOx. Chin J Catal 36:1701–1710CrossRefGoogle Scholar
  14. 14.
    Pan YX, Zhao W, Zhong Q, Cai W, Li HY (2013) Promotional effect of Si-doped V2O5/TiO2 for selective catalytic reduction of NOx by NH3. J Environ Sci 25:1703–1711CrossRefGoogle Scholar
  15. 15.
    Song I, Youn SH, Lee HH, Lee SG, Cho SJ, Kim DH (2017) Effects of microporous TiO2 support on the catalytic and structural properties of V2O5/microporous TiO2 for the selective catalytic reduction of NO by NH3. Appl Catal B 210:421–431CrossRefGoogle Scholar
  16. 16.
    Cha WJ, Chin SM, Park E, Yun ST, Jurng JS (2013) Effect of V2O5 loading of V2O5/TiO2 catalysts prepared via CVC and impregnation methods on NOx removal. Appl Catal B 140–141:708–715CrossRefGoogle Scholar
  17. 17.
    Dong GJ, Zhang YF, Zhao Y, Bai Y (2014) Effect of the pH value of precursor solution on the catalytic performance of V2O5–WO3/TiO2 in the low temperature NH3-SCR of NOx. J Fuel Chem Technol 42:1455–1463CrossRefGoogle Scholar
  18. 18.
    Li JY, Song ZX, Ning P, Zhang QL, Liu X, Li H, Huang ZZ (2015) Influence of calcination temperature on selective catalytic reduction of NOx with NH3 over CeO2–ZrO2–WO3 catalyst. J Rare Earths 33:726–735CrossRefGoogle Scholar
  19. 19.
    Meng DM, Zhan WC, Guo Y, Guo YL, Wang YS, Wang L, Lu GZ (2016) A highly effective catalyst of Sm–Mn mixed oxide for the selective catalytic reduction of NOx with ammonia: effect of the calcination temperature. J Mol Catal A: Chem 420:272–281CrossRefGoogle Scholar
  20. 20.
    Wang JH, Dong XS, Wang YJ, Li YD (2015) Effect of the calcination temperature on the performance of a CeMoOx catalyst in the selective catalytic reduction of NOx with ammonia. Catal Today 245:10–15CrossRefGoogle Scholar
  21. 21.
    Bellifa A, Lahcene D, Tchenar YN, Choukchou-Braham A, Bachir R, Bedrane S, Kappenstein C (2006) Preparation and characterization of 20 wt% V2O5–TiO2 catalyst oxidation of cyclohexane. Appl Catal A 305:1–6CrossRefGoogle Scholar
  22. 22.
    Ma ZR, Wu XD, Feng Y, Si ZC, Weng D, Shi L (2015) Low-temperature SCR activity and SO2 deactivation mechanism of Ce-modified V2O5–WO3/TiO2 catalyst. Process Nat Sci 25:342–352CrossRefGoogle Scholar
  23. 23.
    Chen XB, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefPubMedGoogle Scholar
  24. 24.
    Isabella N, Lorenzo DA, Luca L, Elio G, Pio F (2001) Study of thermal deactivation of a de-NOx commercial catalyst. Appl Catal B 35:31–42CrossRefGoogle Scholar
  25. 25.
    Mutin PH, Popa AF, Vioux A, Delahay G, Coq B (2001) Nonhydrolytic vanadia-titania xerogels: synthesis, characterization, and behavior in the selective catalytic reduction of NO by NH3. Appl Catal B 69:49–57CrossRefGoogle Scholar
  26. 26.
    Bond GC, Tahir SF (1991) Vanadium oxide monolayer catalysts preparation, characterization and catalytic activity. Appl Catal 71:1–31CrossRefGoogle Scholar
  27. 27.
    Bulushev DA, Kiwi-Minsker L, Rainone F, Renken A (2002) Characterization of surface vanadia forms on V/Ti-oxide catalyst via temperature-programmed reduction in hydrogen and spectroscopic methods. J Catal 205:115–122CrossRefGoogle Scholar
  28. 28.
    Kwon DW, Park KH, Hong SC (2013) The influence on SCR activity of the atomic structure of V2O5/TiO2 catalysts prepared by a mechanochemical method. Appl Catal A 451:227–235CrossRefGoogle Scholar
  29. 29.
    Choo ST, Lee YG, Nam IS, Han SW, Lee JB (2000) Characteristics of V2O5 supported on sulfated TiO2 for selective catalytic reduction of NO by NH3. Appl Catal A 200:177–188CrossRefGoogle Scholar
  30. 30.
    Dong GJ, Bai Y, Zhang YF, Zhao Y (2015) Effect of the V4+(3+)/V5+ ration on the denitration activity for V2O5–WO3/TiO2 catalysts. New J Chem 39:3588–3596CrossRefGoogle Scholar
  31. 31.
    Mestl G (2002) In situ Raman spectroscopy for the characterization of MoVW mixed oxide catalysts. J Raman Spectrosc 33:333–347CrossRefGoogle Scholar
  32. 32.
    Qiu Y, Bo L, Du J, Tang Q, Liu ZH, Liu RL, Tao CY (2016) The monolithic cordierite supported V2O5–MoO3/TiO2 catalyst for NH3-SCR. Chem Eng J 294:264–272CrossRefGoogle Scholar
  33. 33.
    Laura C, Luca L, Isbella N, Pio F, Alfons B (1999) SCR of NO by NH3 over TiO2-supported V2O5–MoO3 catalysts: reactivity and redox behavior. Appl Catal B 22:63–77CrossRefGoogle Scholar
  34. 34.
    Tang FS, Zhuang K, Yang F, Yang LL, Xu BL, Qiu JH, Fan YN (2012) Effect of dispersion state and surface properties of supported vanadia on the activity of V2O5/TiO2 catalysts for the selectivity catalytic reduction of NO by NH3. Chin J Catal 33:933–940CrossRefGoogle Scholar
  35. 35.
    Yang RT, Li WB, Chen N (1998) Reversible chemisorption of nitric oxide in the presence of oxygen on titania and titania modified with surface sulfate. Appl Catal A 169:215–225CrossRefGoogle Scholar
  36. 36.
    Guo XY, Calvin B, William H, Larry LB (2009) Effects of sulfate species on V2O5/TiO2 SCR catalysts in coal and biomass-fired systems. Appl Catal B 92:30–40CrossRefGoogle Scholar
  37. 37.
    Magg N, Immaraporn B, Giorgi JB, Schroeder T, Bäumer M, Döbler J, Wu ZL, Kondratenko E, Cherian M, Baerns M, Stair PC, Sauer J, Freund HJ (2004) Vibrational spectra of alumina- and silica-supported vanadia revisited: an experimental and theoretical model catalyst study. J Catal 226:88–100CrossRefGoogle Scholar
  38. 38.
    Broclawik E, Góra A, Najbar M (2001) The role of tungsten in formation of active sites for no SCR on the V–W–O catalyst surface-Quantum chemical modeling(DFT). J Mol Catal A 166:31–38CrossRefGoogle Scholar
  39. 39.
    Al-Kandari H, Al-Kharafi F, Al-Awadi N, El-Dusouqui OM, Ali SA, Katrib A (2005) The catalytic active sites in partially reduced MoO3 for the hydroisomerization of 1-pentene and n-pentane. Appl Catal A 295:1–10CrossRefGoogle Scholar
  40. 40.
    Kang M, Park ED, Kim JM, Yie JE (2007) Manganese oxide catalysts for NOx reduction with NH3 at low temperatures. Appl Catal A 327:261–269CrossRefGoogle Scholar
  41. 41.
    Jing LQ, Xu ZL, Sun XJ, Shang J, Cai WM (2001) The surface properties and photocatalytic activities of ZnO ultrafine particles. Appl Surf Sci 180:308–314CrossRefGoogle Scholar
  42. 42.
    Went GT, Leu LJ, Rosin RR, Bell AT (1992) The effects of structure on the catalytic activity and selectivity of V2O5/TiO2 for the reduction of NO by NH3. J Catal 134:492–505CrossRefGoogle Scholar
  43. 43.
    Guido B, Luca L, Gianguido R, Francesco B (1998) Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: a review. Appl Catal B 18:1–36CrossRefGoogle Scholar
  44. 44.
    Xiong SC, Xiao X, Liao Y, Dang H, Shan WP, Yang SJ (2015) A global kinetic study of NO reduction by NH3 over V2O5–WO3/TiO2: relationship between the SCR performance and the key factors. Ind Eng Chem Res 54:11011–11023CrossRefGoogle Scholar
  45. 45.
    Zhu MH, Lai JK, Wachs IE (2018) Formation of N2O greenhouse gas during SCR of NO with NH3 by supported vanadium oxide catalysts. Appl Catal B 224:836–840CrossRefGoogle Scholar
  46. 46.
    Madia G, Elsener M, Koebel M, Raimondi F, Wokaun A (2002) Thermal stability of vanadia–tungsta–titania catalysts in the SCR process. Appl Catal B 39:181–190CrossRefGoogle Scholar
  47. 47.
    Martín JA, Yates M, Ávila P, Suárez S, Blanco J (2007) Nitrous oxide formation in low temperature selective catalytic reduction of nitrogen oxides with V2O5/TiO2 catalysts. Appl Catal B 70:330–334CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Li Huang
    • 1
  • Yuhao Zong
    • 1
  • Hu Wang
    • 1
    Email author
  • Qian Li
    • 1
  • Tao Chen
    • 1
  • Lin Dong
    • 2
  • Weixin Zou
    • 2
  • Kai Guo
    • 2
  1. 1.Datang Nanjing Environmental Protection Technology Co., LtdNanjingChina
  2. 2.Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina

Personalised recommendations