Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 857–871 | Cite as

Molybdenum anchored onto zeolite beta: an efficient catalyst for the one-pot synthesis of octahydroquinazolinone derivatives under solvent-free conditions

  • Ali Dadashi HadigavabarEmail author
  • Khalil Tabatabaeian
  • Mohammad Ali Zanjanchi
  • Manouchehr Mamaghani


In the present work, the heterogenization of MoO2(acac)2 onto imine functionalized zeolite beta is reported. The catalyst was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy-energy dispersive X-ray analysis (SEM–EDX), BET surface area measurements, CHN microanalysis and inductively coupled plasma (ICP). The activity of the catalyst was assessed in the synthesis of octahydroquinazolinone derivatives under reflux condition and microwave irradiation. The catalyst can be recycled and reused five times without significant loss of activity.


Supported catalysts Molybdenum Microwave-irradiation Solvent free Octahydroquinazolinone 



We are grateful to the Research Council of University of Guilan for their partial support.


  1. 1.
    Domling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89CrossRefPubMedGoogle Scholar
  2. 2.
    Arndtsen BA (2009) Metal-catalyzed one-step synthesis: towards direct alternatives to multistep heterocycle and amino acid derivative formation. Chem Eur J 15:302–313CrossRefPubMedGoogle Scholar
  3. 3.
    Kappe CO (2000) Biologically active dihydropyrimidones of the Biginelli-type: a literature survey. Eur J Med Chem 35:1043–1052CrossRefPubMedGoogle Scholar
  4. 4.
    Ashok M, Holla BS, Kumari NS (2007) Convenient one pot synthesis of some novel derivatives of thiazolo[2,3-b]dihydropyrimidinone possessing 4-methylthiophenyl moiety and evaluation of their antibacterial and antifungal activities. Eur J Med Chem 42:380–385CrossRefPubMedGoogle Scholar
  5. 5.
    Kwon OW, Moon E, Chari MA, Kim TW, Kim AJ, Lee P, Ahn KH, Kim SY (2012) A substituted 3,4-dihydropyrimidinone derivative (compound D22) prevents inflammation mediated neurotoxicity; role in microglial activation in BV-2 cells. Bioorg Med Chem Lett 22:5199–5203CrossRefPubMedGoogle Scholar
  6. 6.
    Kidwai M, Saxena S, Khan MKR, Thukral SS (2005) Synthesis of 4-aryl-7,7-dimethyl-1,2,3,4,5,6,7,8 octahydroquinazoline-2-one/thione-5-one derivatives and evaluation as antibacterials. Eur J Med Chem 40:816–819CrossRefPubMedGoogle Scholar
  7. 7.
    Yarim M, Sarac S, Kilic FS, Erol K (2003) Synthesis and in vitro calcium antagonist activity of 4-aryl-7,7-dimethyl/1,7,7-trimethyl-1,2,3,4,5,6,7,8-octahydroquinazoline-2,5-dione derivatives. IlFarmaco 58:17–24CrossRefGoogle Scholar
  8. 8.
    Ladani NK, Patel MP, Patel RG (2009) An efficient three component one-pot synthesis of some new octahydroquinazolinone derivatives and investigation of their antimicrobial activities. ARKIVOC 7:292–302Google Scholar
  9. 9.
    Hassani Z, Islami MR, Kalantari M (2006) An efficient one-pot synthesis of octahydroquinazolinone derivatives using catalytic amount of H2SO4 in water. Bioorg Med Chem Lett 16:4479–4482CrossRefPubMedGoogle Scholar
  10. 10.
    Kantevari S, Bantu R, Nagarapu L (2006) TMSCl mediated highly efficient one-pot synthesis of octahydroquinazolinone and 1,8-dioxo-octahydroxanthene derivatives. ARKIVOC 16:136–148Google Scholar
  11. 11.
    Lin H, Zhao Q, Xu B, Wang X (2007) Nafion-H catalyzed cyclocondensation reaction for the synthesis of octahydroquinazolinone derivatives. J Mol Catal A 268:221–226CrossRefGoogle Scholar
  12. 12.
    Khurana JM, Kumar S (2010) Ionic liquid: an efficient and recyclable medium for the synthesis of octahydroquinazolinone and biscoumarin derivatives. Monatsh Chem 141:561–564CrossRefGoogle Scholar
  13. 13.
    Mobinikhaledi A, Foroughifar N, Khodaei H (2010) Synthesis of octahydroquinazolinone derivatives using silica sulfuric acid as an efficient catalyst. Eur J Chem 1:291–293CrossRefGoogle Scholar
  14. 14.
    Azzam SHS, Siddekha A, Nizam A, Pasha MA (2012) SiO2-NaHSO4 as an efficient reusable heterogeneous catalyst for the one-pot three-component synthesis of octahydro-quinazolin-2,5-diones in water. Chin J Catal 33:677–680CrossRefGoogle Scholar
  15. 15.
    Heravi MM, Karimi N, Hamidi H, Oskooie HA (2013) Cu/SiO2:a recyclable catalyst for the synthesis of octahydroquinazolinone. Chin Chem Lett 24:143–144CrossRefGoogle Scholar
  16. 16.
    Lidstrom P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis: a review. Tetrahedron 57:9225–9283CrossRefGoogle Scholar
  17. 17.
    Kappe CO, Stadler A (2005) Microwaves in organic and medicinal chemistry. Wiley, WeinheimCrossRefGoogle Scholar
  18. 18.
    Loupy A (2002) Microwaves in organic synthesis. Wiley, WeinheimCrossRefGoogle Scholar
  19. 19.
    Ranu BC, Hajra A, Jana U (2000) Microwave assisted simple synthesis of quinolones from anilines and alkyl vinyl ketones on the surface of silica gel in the presence of indium(III)chloride. Tetrahedron Lett 41:531–533CrossRefGoogle Scholar
  20. 20.
    Quiroga J, Cisneros C, Insuasty B, Abonia R, Nogueras M, Sanchez A (2001) A regiospecific three-component one-step cyclocondensation to 6-cyano-5,8-dihydropyrido[2,3-d]pyrimidin-4(3H)-ones using microwaves under solvent-free conditions. Tetrahedron Lett 42:5625–5627CrossRefGoogle Scholar
  21. 21.
    Niralwad KS, Shingate BB, Shingare MS (2010) Microwave-assisted one-pot synthesis of octahydroquinazolinone derivatives using ammonium metavanadate under solvent-free condition. Tetrahedron Lett 51:3616–3618CrossRefGoogle Scholar
  22. 22.
    Badadhe PV, Chate AV, Hingane DG, Mahajan PS, Chavhan NM, Gill CH (2011) Microwave-assisted one-pot synthesis of octahydroquinazolinone derivatives catalyzed by thiamine hydrochloride under solvent-free condition. J Korean Chem Soc 55:936–939CrossRefGoogle Scholar
  23. 23.
    Samantaray S, Mishra BG (2011) Combustion synthesis, characterization and catalytic application of MoO3–ZrO2 nanocomposite oxide towards one pot synthesis of octahydroquinazolinonesJ. Mol Catal A Chem 339:92–98CrossRefGoogle Scholar
  24. 24.
    Jadhav S, Anandgaonker PL, Kulkarni G, Gaikwad ST, Rajbhoj AS (2014) Microwave-assisted one-pot synthesis of octahydroquinazolinone derivatives using molybdenum oxide nanoparticles in solvent-free condition. J Clust Sci 25:1389–1399CrossRefGoogle Scholar
  25. 25.
    Kuraitheerthakumaran A, Pazhamalai S, Manikandan H, Gopalakrishnan M (2014) J Saudi Chem Soc 18:920–924CrossRefGoogle Scholar
  26. 26.
    Arnold U, Cruz RSD, Mandelli D, Schuchardt U (2001) Activity, selectivity and stability of metallosilicates containing molybdenum for the epoxidation of alkenes. J Mol Catal A 165:149–158CrossRefGoogle Scholar
  27. 27.
    Fuerte A, Iglesias M, Sanchez F, Corma A (2004) Chiral dioxomolybdenum(VI) and oxovanadium(V) complexes anchored on modified USY-zeolite and mesoporous MCM-41 as solid selective catalysts for oxidation of sulfides to sulfoxides or sulfones. J Mol Catal A 211:227–235CrossRefGoogle Scholar
  28. 28.
    Reyes P, Borda G, Gnecco J, Rivas BL (2004) MoO2(acac)2 immobilized on polymers as catalysts for cyclohexene epoxidation: effect of the degree of crosslinking. J Appl Polym Sci 93:1602–1608CrossRefGoogle Scholar
  29. 29.
    Wang G, Feng L, Luck RL, Evans DG, Wang Z, Duan X (2005) Sol-gel synthesis, characterization and catalytic property of silicas modified with oxomolybdenum complexes. J Mol Catal A 241:8–14CrossRefGoogle Scholar
  30. 30.
    Sakthivel A, Zhao J, Raudaschl-Sieber G, Hanzlik M, Chiang AST, Kuhn FE (2005) Heterogenization of chiral molybdenum(VI)dioxo complexes on mesoporous materials and their application in catalysis. Appl Catal A 281:267–273CrossRefGoogle Scholar
  31. 31.
    Bruno SM, Fernandes JA, Martins LS, Goncalves IS, Pillinger M, Ribeiro-Claro P, Rocha J, Valente AA (2006) Dioxomolybdenum(VI) modified mesoporous materials for the catalytic epoxidation of olefins. Catal Today 114:263–271CrossRefGoogle Scholar
  32. 32.
    Masteri-Farahani M, Farzaneh F, Ghandi M (2006) Synthesis and characterization of molybdenum complexes with bidentate Schiff base ligands within nanoreactors of MCM-41 as epoxidation catalysts. J Mol Catal A 248:53–60CrossRefGoogle Scholar
  33. 33.
    Bakala PC, Briot E, Salles L, Bregeault JM (2006) Comparison of liquid-phase olefin epoxidation over MoOx inserted within mesoporous silica (MCM-41, SBA-15) and grafted onto silica. Appl Catal A 300:91–99CrossRefGoogle Scholar
  34. 34.
    Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Ghani K (2008) MoO2(acac)2 supported on silica functionalized imidazole as a highly efficient and reusable catalyst for alkene epoxidation with tert-BuOOH. Inorg Chem Commun 11:270–274CrossRefGoogle Scholar
  35. 35.
    Gomes AC, Bruno SM, Gago S, Lopes RP, Machado DA, Carminatti AP, Valente AA, Pillinger M, Goncalves IS (2011) Epoxidation of cyclooctene using soluble or MCM-41-supported molybdenum tetracarbonylepyridylimine complexes as catalyst precursors. J Organomet Chem 696:3543–3550CrossRefGoogle Scholar
  36. 36.
    Farias M, Martinelli M, Rolim GK (2011) Immobilized molybdenum acetylacetonate complex on montmorillonite K-10 as catalyst for epoxidation of vegetable oils. Appl Catal A 403:119–127CrossRefGoogle Scholar
  37. 37.
    Sharma RK, Pandey A, Gulati S (2012) Silica-supported molybdenum complex: a novel, selective and reusable organic–inorganic hybrid catalyst for eco-friendly oxidation of sulfides and olefins. Polyhedron 45:86–93CrossRefGoogle Scholar
  38. 38.
    Esnaashari F, Moghadam M, Mirkhani V, Tangestaninejad S, MohammadpoorBaltork I, Khosoropour AR, Zakeri M, Hushmandrad S (2012) MoO2(acac)2 supported on multi-wall carbon nanotubes: highly efficient and reusable catalysts for alkene epoxidation with tert-BuOOH. Polyhedron 48:212–220CrossRefGoogle Scholar
  39. 39.
    Gao B, Wan M, Men J, Zhang Y (2012) Aerobic selective oxidation of benzyl alcohols to benzaldehyde catalyzed by bidentate Schiff base dioxomolybdenum(VI) complex immobilized on CPS microspheres. Appl Catal A 439–440:156–162CrossRefGoogle Scholar
  40. 40.
    Esnaashari F, Moghadam M, Mirkhani V, Tangestaninejad S, Mohammadpoor-Baltork I, Khosoropour AR, Zakeri M (2012) Multi-wall carbon nanotubes supported molybdenyl acetylacetonate: efficient and highly reusable catalysts for epoxidation of alkenes with tert-butyl hydroperoxide. Mater Chem Phys 137:69–75CrossRefGoogle Scholar
  41. 41.
    Rayati S, Abdolalian P (2013) Heterogenization of a molybdenum Schiff base complex as a magnetic nanocatalyst: an eco-friendly, efficient, selective and recyclable nanocatalyst for the oxidation of alkenes. C R Chim 16:814–820CrossRefGoogle Scholar
  42. 42.
    Zhang J, Jiang P, Shen Y, Zhang W, Li X (2015) Molybdenum(VI) complex with a tridentate Schiff base ligand immobilized on SBA-15 as effective catalysts in epoxidation of alkenes. Microporous Mesoporous Mater 206:161–169CrossRefGoogle Scholar
  43. 43.
    Tabatabaeian K, Zanjanchi MA, Mamaghani M, Dadashi A (2014) Anchoring of ruthenium onto imine functionalized zeolitebeta: an efficient route for the synthesis of 4H-benzo[b]pyrans and pyrano[c]chromenes. Can J Chem 92:1086–1091CrossRefGoogle Scholar
  44. 44.
    Robson H (2001) Verified synthesis of zeolitic materials, 2nd edn. Elsevier, AmesterdamGoogle Scholar
  45. 45.
    Ortiz-Iniesta MJ, Heeres HJ, Melian-Cabrera I (2013) Direct activation of microcrystalline zeolites. Microporous Mesoporous Mater 171:208–214CrossRefGoogle Scholar
  46. 46.
    Liu H, Wang L, Li P (2008) Highly efficient and recyclable palladium catalyst anchored on organic-inorganic hybrid material: application in the heck reaction. Synthesis 38:2405–2411Google Scholar
  47. 47.
    Sharma RK, Rawat D (2012) Silica immobilized nickel complex: an efficient and reusable catalyst for microwave-assisted one-pot synthesis of dihydropyrimidinones. Inorg Chem Commun 17:58–63CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Ali Dadashi Hadigavabar
    • 1
    Email author
  • Khalil Tabatabaeian
    • 1
  • Mohammad Ali Zanjanchi
    • 1
  • Manouchehr Mamaghani
    • 1
  1. 1.Department of Chemistry, Faculty of SciencesUniversity of GuilanRashtIslamic Republic of Iran

Personalised recommendations