Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 825–838 | Cite as

Dimethyl ether conversion to olefins in a slurry reactor: the effect of MFI zeolite catalyst acidity and selectivity control

  • Nataliya V. Kolesnichenko
  • Vladimir S. Pavlov
  • Anton N. Stashenko
  • Olga V. Yashina
  • Nataliya N. Ezhova
  • Stanislav V. Konnov
  • Salambek N. Khadzhiev
Article
  • 116 Downloads

Abstract

The textural, acidic and catalytic properties of nanosized samples of commercial MFI zeolites with SiO2/Al2O3 molar ratios of 30, 50 and 80 supplied by Zeolyst Co. and some synthesized nanocrystallites of MFI zeolites with a SiO2/Al2O3 molar ratio of 55 and 80 were compared. It was shown that the SiO2/Al2O3 ratio had no impact on catalyst deactivation in the slurry reactor as in the conventional fixed-bed reactor. Irreversible deactivation was observed only for the samples with an extremely high external surface Brønsted acidity indicating that near-surface secondary processes are responsible in catalyst deactivation. It was shown that the reaction temperature influenced the product selectivity due to change in the contribution of both hydrogen transfer reaction and arene/alkene circles and can be considered to be an efficient tool of selectivity control for DME conversion in the slurry reactor.

Keywords

Dimethyl ether conversion Ethylene and propylene synthesis Zeolites with the MFI-type structure Nanosized zeolites Slurry reactor Catalysis in the dispersed phase 

Notes

Acknowledgements

The authors gratefully thank Russian Science Foundation (Grant No. 15-13-00104) for financial support. V Pavlov thanks Haldor Topsøe A/S for Ph.D. Scholarship Program.

References

  1. 1.
    Zhang S, Gong Y, Zhang L, Liu Y, Dou T, Xu J, Deng F (2015) Fuel Process Technol 129:130CrossRefGoogle Scholar
  2. 2.
    Keil JF (1999) Microporous Mesoporous Mater 29:49CrossRefGoogle Scholar
  3. 3.
    Galadima A, Muraza O (2015) J Nat Gas Sci Eng 25:303CrossRefGoogle Scholar
  4. 4.
    Prongsawat W, Netivorruksa B, Suriye K, Dokjampa S, Praserthdam P, Panpranot J (2012) J Nat Gas Chem 21:83CrossRefGoogle Scholar
  5. 5.
    Cai G, Liu Z, Shi R, He Ch, Yang L, Sun Ch, Chang Y (1995) Appl Catal A 125:29CrossRefGoogle Scholar
  6. 6.
    Olsbye U, Svelle S, Bjørgen M, Beato P, Janssens TV, Joensen F, Bordiga S, Lillerud KP (2012) Angew Chem Int Edit 51:5810CrossRefGoogle Scholar
  7. 7.
    Hack M, Koss U, Konig P, Rothaemel M, Holtmann H-D (2006) US Patent 7015369Google Scholar
  8. 8.
    Ishida T, Yanagihara T, Hamasaki A, Yokoyama T, Tokunaga M, Liu X, Ohashi H, Honma T, Oji H (2013) Appl Catal A 458(1):145CrossRefGoogle Scholar
  9. 9.
    Hajjar Z, Khodadadi A, Mortazavi Y, Tayyebi S, Soltanali S (2016) Fuel 179:79CrossRefGoogle Scholar
  10. 10.
    Kolesnichenko NV, Kolesnikova EE, Kitaev LE, Biryukova EN, Trukhmanova NI, Khadzhiev SN (2012) Pet Chem 52:155CrossRefGoogle Scholar
  11. 11.
    Khadzhiev SN, Kolesnichenko NV, Hivrich EN, Kolesnikova EE, Batova TI (2013) Pet Chem 53:225CrossRefGoogle Scholar
  12. 12.
    Rozovsky AYa, Lin GI, Kotel’nikov VN, Majdurov NP, Petrov VN, Brand BB, Makhlin VA (2004) RU Patent 2220939Google Scholar
  13. 13.
    Rozovsky AYA, Lin GI, Sobolevsky VS (2003) RU Patent 2218988Google Scholar
  14. 14.
    Buisson B, Donegan S, Wray D, Parracho A, Gamble J, Caze Ph, Jorda J, Guermeur C (2009) Chem Today 27:12Google Scholar
  15. 15.
    Lira A, Tailleur RG (2012) Fuel 97:49CrossRefGoogle Scholar
  16. 16.
    Pollington SD, Enache DL, Landon P, Meenakshisundaram S, Dimitratos N, Wagland A, Hutchings GJ, Stitt EH (2009) Catal Today 145:169CrossRefGoogle Scholar
  17. 17.
    Clerici G C E, Belmonte G (2005) GB Patent 2403433Google Scholar
  18. 18.
    Pintar A, Berčič G, Besson M, Gallezot P (2007) Appl Catal B 47:143CrossRefGoogle Scholar
  19. 19.
    Khadzhiev SN (2011) Pet Chem 51:1CrossRefGoogle Scholar
  20. 20.
    Liu Y, Hanaoka T, Miyazawa T, Murata K, Okabe K, Sakanishi K (2009) Fuel Proc Technol 90:901CrossRefGoogle Scholar
  21. 21.
    Wang T, Wang J, Jin Y (2007) Ind Eng Chem Res 46:5824CrossRefGoogle Scholar
  22. 22.
    Haghtalab A, Nabipoor M, Farzad S (2012) Fuel Proc Technol 104:73CrossRefGoogle Scholar
  23. 23.
    Khadzhiev SN, Lyadov AS, Krylova MV, Krylova A (2011) Pet Chem 51:24CrossRefGoogle Scholar
  24. 24.
    Sadeqzadeh M, Chambrey S, Piche S, Fongarland P, Khodakov AY, Luck F, Curulla-Ferre D, Bousquet J, Schweich D (2013) Catal Today 215:52CrossRefGoogle Scholar
  25. 25.
    Botes FG, Van de Loosdrecht J, Niemantsverdriet JW (2013) Catal Today 215:112CrossRefGoogle Scholar
  26. 26.
    Khadzhiev SN (2016) Pet Chem 56:465CrossRefGoogle Scholar
  27. 27.
    Koohsaryan E, Anbia M (2016) Chinese J Catal 37:447CrossRefGoogle Scholar
  28. 28.
    Mintova S, Gilson J-P, Valtchev V (2013) Nanoscale 5:6693CrossRefGoogle Scholar
  29. 29.
    Valtchev V, Tosheva L (2013) Chem Rev 113:6734CrossRefGoogle Scholar
  30. 30.
    Ya Yueer, Xiao G, Yahong Zh, Yi Tang (2015) Catal. Sci Technol 5:772Google Scholar
  31. 31.
    Chen JLH, Li XY (2012) J Mater Chem 22:17381CrossRefGoogle Scholar
  32. 32.
    Majano G, Darwiche A, Mintova S, Valtchev V (2009) Ind Eng Chem Res 48:7084CrossRefGoogle Scholar
  33. 33.
    Wang X-D, Wang Y-J, Yang W-L, Dong A-G, Ren N, Xie Z-K, Tang Y (2003) Acta Chim Sinica 63:354Google Scholar
  34. 34.
    Uillis RR, Kjukhl DE, Benin AI (2009) RU Patent 2377180Google Scholar
  35. 35.
    Vuong GT, Do TO (2009) Microporous Mesoporous Mater 120:310CrossRefGoogle Scholar
  36. 36.
    Hu Y, Liu C, Zhang Y, Ren N, Tang Y (2009) Microporous Mesoporous Mater 119:306CrossRefGoogle Scholar
  37. 37.
    Li C, Wang Y, Shi B, Ren J, Liu X, Wang Y, Guo Y, Lu G (2009) Microporous Macroporous Mater 117:104CrossRefGoogle Scholar
  38. 38.
    Teng X, Meng W-Y, Ming-Yuan H (2012) Microporous Mesoporous Mater 156:29CrossRefGoogle Scholar
  39. 39.
    Petrova PN, Okhlopkova AA, Sokolova MD, Isakova TA (2015) Phys Chem Mater Treat 3:57Google Scholar
  40. 40.
    Nikolaeva LA, Kopylov VE, Burenina ON, Popov SN, Portnyagina VV (2014) Min Inf Anal Bull 9:398Google Scholar
  41. 41.
    Belaya LA, Doronin VP, Sorokina TP (2009) Catal Ind 3:12–13Google Scholar
  42. 42.
    Baranchikov AE, Ivanov VK, Tretyakov Y (2007) Russ Chem Rev 76:147CrossRefGoogle Scholar
  43. 43.
    Khadzhiev SN, Kolesnichenko NV, Ezhova NN, Korosteleva IG, Yashina OV, Hivrich EN (2015) RU Patent 2547838Google Scholar
  44. 44.
    Kolesnichenko NV, Ezhova NN, Yashina OV (2016) Pet Chem 56:829Google Scholar
  45. 45.
    Van Grieken R, Sotelo JL, Menéndez JM, Melero JA (2000) Microporous Mesoporous Mater 39:135CrossRefGoogle Scholar
  46. 46.
    Popov AG, Pavlov VS, Ivanova II (2016) J Catal 335:155CrossRefGoogle Scholar
  47. 47.
    Wang Y, Chen S-L, Gao Y-L, Cao Y-Q, Zhang Q, Chang W-K (2017) ACS Catal 7:5572CrossRefGoogle Scholar
  48. 48.
    Thommes M, Cychosz KA (2014) Adsorption 20:233CrossRefGoogle Scholar
  49. 49.
    Kojima M, Rautenbach MW, Connor CTO (1988) J Catal 112:495CrossRefGoogle Scholar
  50. 50.
    Tamura M, Shimizu KI, Satsuma A (2012) Appl Catal A 433:135CrossRefGoogle Scholar
  51. 51.
    Lefrancois M, Malbois G (1971) J Catal 20:350CrossRefGoogle Scholar
  52. 52.
    Basab Ch, Viswanathan B (1999) Catal Today 49:253CrossRefGoogle Scholar
  53. 53.
    Corma A, Fornes V, Forni L, Marquez F, Martiınez-Triguero J, Moscott D (1998) J Catal 179:451–458CrossRefGoogle Scholar
  54. 54.
    Schulz H (2010) Catal Today 154:183CrossRefGoogle Scholar
  55. 55.
    Barbera K, Bonino F, Bordiga S, Janssens TVW, Beato P (2011) J Catal 280:196CrossRefGoogle Scholar
  56. 56.
    Ovsitser O, Schomaecker R, Kondratenko E, Wolfram T, Trunschke A (2012) Catal Today 192:16CrossRefGoogle Scholar
  57. 57.
    Khadzhiev SN, Magomedova MV, Peresypkina EG (2014) Pet Chem 54:245–269CrossRefGoogle Scholar
  58. 58.
    Vandichel M, Jeroen DL, Van der Mynsbrugge V, Waroquier M, Van Speybroeck V (2010) J Catal 271:67CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.A.V. Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations