Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 469–485 | Cite as

Phosphomolybdovanadic acid catalyzed oxidation of 2,6-dimethylphenol into para-quinone in a biphasic system

  • Yulia A. Rodikova
  • Elena G. Zhizhina
  • Zinaida P. Pai
Article
  • 54 Downloads

Abstract

In this paper, we disclose the results of our extended investigations on the reactivity of modified-type vanadium-containing heteropoly acids \({\text{H}}_{\text{a}} {\text{P}}_{\text{z}} {\text{Mo}}_{\text{y}} {\text{V}}_{{{\text{x}}^{\prime}}} {\text{O}}_{\text{b}}\) (HPA-x′) towards the oxidation of 2,6-dimethylphenol (2,6-Me2P). This reaction is of great value as an effective way to the corresponding 2,6-dimethyl-1,4-benzoquinone (2,6-Me2BQ), practically avoiding the formation of diphenoquinone, which is interesting from the standpoint of its potential application as a sensitizer and ‘platform molecule’. The overall process is based on two reactions: the oxidation of 2,6-Me2P by \({\text{V}}^{\text{V}} {\text{O}}_{2}^{ + } \leftrightarrow {\text{V}}^{\text{V}} {\text{ - HPA}}\) and the oxidation of reduced VIV-HPA ↔ VIVO2+ by dioxygen to the initial state. Special attention was given to the former process with regard to the influence of the reaction parameters on the product distribution. The desired quinone was efficiently synthesized in good yield (95%) at total substrate conversion, carrying out the oxidation in a biphasic water–trichloroethene system at 70 °C under nitrogen atmosphere in the presence of HPA-10′ solution (H17P3Mo16V10O89). The increase in vanadium content favored the selectivity of 2,6-Me2BQ due to faster electron transfer. The multicycle tests of catalyst showed its stability to V2O5·nH2O deposition.

Keywords

Benzoquinones Heteropoly acids Homogeneous catalysis Selective oxidation Biphasic system 

Notes

Acknowledgements

This work was conducted within the Framework of Budget Project No. AAAA-A17-117041710081-1 for Boreskov Institute of Catalysis.

Supplementary material

11144_2018_1367_MOESM1_ESM.rar (836 kb)
Supplementary material 1 (RAR 836 kb)
11144_2018_1367_MOESM2_ESM.rar (701 kb)
Supplementary material 2 (RAR 700 kb)

References

  1. 1.
    Hoelderich WF (2000) Catal Today 62:115–130CrossRefGoogle Scholar
  2. 2.
    Kholdeeva OA, Zalomaeva OV (2016) Coord Chem Rev 306:302–330CrossRefGoogle Scholar
  3. 3.
    Berzelius J (1826) Ann Phys 82:369–392CrossRefGoogle Scholar
  4. 4.
    Pope MT (1983) Heteropoly and isopoly oxometalates. Springer, BerlinCrossRefGoogle Scholar
  5. 5.
    Kozhevnikov IV (2002) Catalysts for fine chemical synthesis. Catalysis by polyoxometalates, vol 2. Wiley, ChichesterGoogle Scholar
  6. 6.
    Misono M (2009) Catal Today 144:285–291CrossRefGoogle Scholar
  7. 7.
    Xu N, Jin X, Suzuki K, Yamaguchi K, Mizuno N (2016) N J Chem 40:4865–4869CrossRefGoogle Scholar
  8. 8.
    Zhizhina EG, Odyakov VF (2008) React Kinet Catal Lett 95:301–312CrossRefGoogle Scholar
  9. 9.
    Deng W, Zhang Q, Wang Y (2012) Dalton Trans 41:9817–9831CrossRefGoogle Scholar
  10. 10.
    Zhizhina EG, Odyakov VF (2013) Chem Eng J 230:308–313CrossRefGoogle Scholar
  11. 11.
    Gogin L, Zhizhina EG, Pai ZP, Parmon VN (2015) Russ Chem Bull 64:2069–2075CrossRefGoogle Scholar
  12. 12.
    Gromov NV, Taran OP, Delidovich IV, Pestunov AV, Rodikova YA, Yatsenko DA, Zhizhina EG, Parmon VN (2016) Catal Today 278:74–81CrossRefGoogle Scholar
  13. 13.
    Rodikova YA, Zhizhina EG (2013) J Chem Chem Eng 7:808–820Google Scholar
  14. 14.
    Rodikova YA, Zhizhina EG, Pai ZP (2018) Appl Catal A 549:216–224CrossRefGoogle Scholar
  15. 15.
    Argyrou A, Vetting MW, Blanchard JS (2004) J Biol Chem 279:52694–52702CrossRefGoogle Scholar
  16. 16.
    Sanchez-Cruz P, Garcia C, Alegria AE (2010) Free Radic Biol Med 49:1387–1394CrossRefGoogle Scholar
  17. 17.
    Kouras-Hadef S, Amine-Khodja A, Halladja S, Richard C (2012) J Photochem Photobiol A 229:33–38CrossRefGoogle Scholar
  18. 18.
    Cardoso Lima T, Lima Santos SR, Uliana MP, La Corte Santos R, Brocksom TJ, de Holanda Cavalcanti SC, Pergentino de Sousa D (2015) Parasitol Res 114:2883–2891CrossRefGoogle Scholar
  19. 19.
    Schubert M, Metz P (2011) Angew Chem 123:3011–3013CrossRefGoogle Scholar
  20. 20.
    Zhao L, Burnell DJ (2006) Org Lett 8:155–157CrossRefGoogle Scholar
  21. 21.
    Uno T, Yamamoto S, Yamane A, Kubo M, Itoh T (2017) J Polym Sci A 55:1048–1058CrossRefGoogle Scholar
  22. 22.
    Masutani K, Minowa T, Hagiwara Y, Mukaiyama T (2006) Bull Chem Soc Jpn 79:1106–1117CrossRefGoogle Scholar
  23. 23.
    Wippich J, Schnapperelle I, Bach T (2015) Chem Commun 51:3166–3168CrossRefGoogle Scholar
  24. 24.
    Räder AFB, Tiefenbacher K (2014) Angew Chem Int Ed 53:1206–1207CrossRefGoogle Scholar
  25. 25.
    Lorenc JF, Lambeth G, Scheffer W (2003) Kirk-Othmer encyclopedia of chemical technology, vol 2. Wiley-VCH, WeinheimGoogle Scholar
  26. 26.
    Cason J (1948) In: Adams R (ed) Organic reactions, vol 4. Wiley, New YorkGoogle Scholar
  27. 27.
    Rodikova YA, Zhizhina EG, Pai ZP (2016) ChemistrySelect 1:2113–2128CrossRefGoogle Scholar
  28. 28.
    Odyakov VF, Zhizhina EG (2009) Russ J Inorg Chem 54:361–367CrossRefGoogle Scholar
  29. 29.
    Odyakov VF, Zhizhina EG, Maksimovskaya RI (2008) Appl Catal A 342:126–130CrossRefGoogle Scholar
  30. 30.
    Dikshitulu LSA, Rao GG (1962) Z Anal Chem 189:421–426CrossRefGoogle Scholar
  31. 31.
    Pope MT, Scully TF (1975) Inorg Chem 14:953–954CrossRefGoogle Scholar
  32. 32.
    Selling A, Andersson I, Grate JH, Pettersson L (2000) Eur J Inorg Chem 2000:1509–1521CrossRefGoogle Scholar
  33. 33.
    Detusheva LG, Yurchenko EN (1982) Sov J Coord Chem 8:948–954Google Scholar
  34. 34.
    Detusheva LG, Yurchenko EN (1990) Sov J Coord Chem 16:930–934Google Scholar
  35. 35.
    Maksimovskaya RI, Fedotov MA, Mastikhin VM, Kuznetsova LI, Matveev KI (1978) Dokl Chem (Engl Transl) 240:117–120Google Scholar
  36. 36.
    Odyakov VF, Zhizhina EG, Maksimovskaya RI, Matveev KI (1995) Kinet Katal 36:795–800Google Scholar
  37. 37.
    Odyakov VF, Zhizhina EG, Matveev KI (2000) J Mol Catal A 158:453–456CrossRefGoogle Scholar
  38. 38.
    Pettersson L (1994) In: Pope MT, Müller A (eds) Polyoxometalates. Kluwer Academic Publishers, DordrechtGoogle Scholar
  39. 39.
    Ershov VV, Nikiforov GA, Volodkin AA (1972) Spatially hindered phenols. Khimiya, MoscowGoogle Scholar
  40. 40.
    Kuznetsova LI, Matveev KI (1975) React Kinet Catal Lett 3:305–310CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Fine Organic Synthesis and Renewable Energy SourcesBoreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation

Personalised recommendations