Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 741–755 | Cite as

A novel sulfamic acid functionalized nano-catalyst on the basis of calix[4]resorcinarene for the green one-pot synthesis of 2H-indazolo[2,1-b]phthalazine-triones under thermal solvent-free conditions

  • Arash MouradzadegunEmail author
  • Mahsa Alsadat Mostafavi
  • Mohammad Reza Ganjali


N-propyl sulfamic acid supported nano-catalyst on the basis of calix[4]resorcinarene was prepared via the efficient and facile reaction of amine functionalized polycalix[4]resorcinarene with chlorosulfonic acid. The achieved catalytic system was characterized using some spectroscopic techniques such as Fourier transform Infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and CHNS elemental analysis. This newly developed acidic catalyst was employed efficiently in a one-pot three-component condensation reaction of aromatic aldehydes, dimedone and phthalhydrazide for the synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives through an easy and eco-friendly methodology. The catalyst was easily separated from the reaction mixture by simple filtration and the desired products were achieved in good to excellent yields in short reaction times.


N-propyl sulfamic acid functionalized nano-catalyst Heterogeneous catalysis Multi-component reactions Solvent-free One-pot condensation 2H-indazolo[2,1-b]phthalazine-triones 



This work was supported by the Research Council at the University of Shahid Chamran.

Supplementary material

11144_2018_1363_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1954 kb)


  1. 1.
    Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University, OxfordGoogle Scholar
  2. 2.
    Zhang W, Cue B (2012) Green techniques for organic synthesis and medicinal chemistry. Wiley, ChichesterCrossRefGoogle Scholar
  3. 3.
    Mondloch JE, Bayram E, Finke RG (2012) A review of the kinetics and mechanisms of formation of supported-nanoparticle heterogeneous catalysts. J Mol Catal A 355:1–38CrossRefGoogle Scholar
  4. 4.
    Dawson R, Cooper AI, Adams DJ (2012) Nanoporous organic polymer networks. Prog Polym Sci 37:530–563CrossRefGoogle Scholar
  5. 5.
    Kaur P, Hupp JT, Nguyen ST (2011) Porous organic polymers in catalysis: opportunities and challenges. ACS Catal 1:819–835CrossRefGoogle Scholar
  6. 6.
    Molla RA, Iqubal MA, Ghosh K, Kamaluddin, Islam SM (2015) Nitrogen enriched mesoporous organic polymer anchored copper(II) material: an efficient and reusable catalyst for the synthesis of esters and amides from aromatic systems. Dalton Trans 44:6546–6559CrossRefPubMedGoogle Scholar
  7. 7.
    Choi DH, Ryoo R (2010) Template synthesis of ordered mesoporous organic polymeric materials using hydrophobic silylated KIT-6 mesoporous silica. J Mater Chem 20:5544–5550CrossRefGoogle Scholar
  8. 8.
    Kundu SK, Bhaumik A (2015) Pyrene-based porous organic polymers as efficient catalytic support for the synthesis of biodiesels at room temperature. ACS Sustain Chem Eng 3:1715–1723CrossRefGoogle Scholar
  9. 9.
    Li B, Guan Z, Yang X, Wang WD, Wang W, Hussain I, Song K, Tan B, Li T (2014) Multifunctional microporous organic polymers. J Mater Chem A 2:11930–11939CrossRefGoogle Scholar
  10. 10.
    Suresh VM, Bonakala S, Atreya HS, Balasubramanian S, Maji TK (2014) Amide functionalized microporous organic polymer (Am-MOP) for selective CO2 sorption and catalysis. ACS Appl Mater Interfaces 6:4630–4637CrossRefPubMedGoogle Scholar
  11. 11.
    Climent MJ, Corma A, Iborra S (2012) Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv 2:16–58CrossRefGoogle Scholar
  12. 12.
    Zhang Q, Luo J, Wei Y (2010) A silica gel supported dual acidic ionic liquid: an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Green Chem 12:2246–2254CrossRefGoogle Scholar
  13. 13.
    Shaterian HR, Yarahmadi H, Ghashang M (2008) Silica supported perchloric acid (HClO4–SiO2): an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Tetrahedron 64:1263–1269CrossRefGoogle Scholar
  14. 14.
    Asif M (2012) Some recent approaches of biologically active substituted pyridazine and phthalazine drugs. Curr Med Chem 19:2984–2991CrossRefPubMedGoogle Scholar
  15. 15.
    El-Sakka SS, Soliman AH, Imam AM (2009) Synthesis, antimicrobial activity and electron impact of mass spectra of phthalazine-1,4-dione derivatives. Afinidad 66:167–172Google Scholar
  16. 16.
    Singh S, Yadav A, Meena AK, Singh U, Singh B, Gaurav A, Rao MM, Panda P, Singh R (2010) Pharmacological action and SAR of phthalazine derivatives. Int J Chem Anal Sci 1:79–87Google Scholar
  17. 17.
    Ryu CK, Park RE, Ma MY, Nho JH (2007) Synthesis and antifungal activity of 6-arylamino-phthalazine-5,8-diones and 6,7-bis(arylthio)-phthalazine-5,8-diones. Bioorg Med Chem Lett 17:2577–2580CrossRefPubMedGoogle Scholar
  18. 18.
    Sun XY, Wei CX, Deng XQ, Sun ZG, Quan ZS (2010) Evaluation of the anticonvulsant activity of 6-(4-chlorophenyoxy)-tetrazolo[5,1-a]phthalazine in various experimental seizure models in mice. Pharmacol Rep 62:273–277CrossRefPubMedGoogle Scholar
  19. 19.
    Zhang L, Guan LP, Sun XY, Wei CX, Chai KY, Quan ZS (2009) Synthesis and anticonvulsant activity of 6-alkoxy-[1,2,4]triazolo[3,4-a] phthalazines. Chem Bio Drug Des 73:313–319CrossRefGoogle Scholar
  20. 20.
    Li J, Zhao YF, Yuan XY, Xu JX, Gong P (2006) Synthesis and anticancer activities of novel 1,4-disubstituted phthalazines. Molecules 11:574–582CrossRefPubMedGoogle Scholar
  21. 21.
    Watanabe N, Kabasawa Y, Takase Y, Matsukura M, Miyazaki K, Ishihara H, Kodama K, Adachi H (1998) 4-Benzylamino-1-chloro-6-substituted phthalazines: synthesis and inhibitory activity toward phosphodiesterase. J Med Chem 41:3367–3372CrossRefPubMedGoogle Scholar
  22. 22.
    Kidwai M, Jahan A, Chauhan R, Mishra N, Neeraj K (2012) Dodecylphosphonic acid (DPA): a highly efficient catalyst for the synthesis of 2H-indazolo[2,1-b]phthalazine-triones under solvent-free conditions. Tetrahedron Lett 53:1728–1731CrossRefGoogle Scholar
  23. 23.
    Nagarapu L, Bantu R, Mereyala HB (2009) TMSCl-mediated one-pot, three-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones. J Heterocycl Chem 46:728–731CrossRefGoogle Scholar
  24. 24.
    Khurana JM, Magoo D (2009) Efficient one-pot syntheses of 2H-indazolo[2,1-b] phthalazine-triones by catalytic H2SO4 in water–ethanol or ionic liquid. Tetrahedron Lett 50:7300–7303CrossRefGoogle Scholar
  25. 25.
    Wang HJ, Zhang XN, Zhang ZH (2010) Highly efficient three-component synthesis of 1H-indazolo[1,2-b]phthalazinetrione derivatives catalyzed by heteropolyacids. Monatsh Chem 141:425–430CrossRefGoogle Scholar
  26. 26.
    Hasaninejed A, Kazerooni MR, Zare A (2012) Solvent-free, one-pot, four-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones using sulfuric acid-modified PEG-6000 as a green recyclable and biodegradable polymeric catalyst. Catal Today 196:148–155CrossRefGoogle Scholar
  27. 27.
    Mosaddegh E, Hassankhani A (2011) A rapid, one-pot, four-component route to 2H-indazolo[2,1-b]phthalazine-triones. Tetrahedron Lett 52:488–490CrossRefGoogle Scholar
  28. 28.
    Shaterian HR, Hosseinian A, Ghashang M (2009) Reusable silica supported poly phosphoric acid catalyzed three-component synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives. Arkivoc 2:59–67Google Scholar
  29. 29.
    Shaterian HR, Ghashang M, Feyzi M (2008) Silica sulfuric acid as an efficient catalyst for the preparation of 2H-indazolo [2,1-b] phthalazine-triones. Appl Catal A 345:128–133CrossRefGoogle Scholar
  30. 30.
    Sabitha G, Srinivas C, Raghavendar A, Yadav JS (2010) Phosphomolybdic acid (PMA)–SiO2 as a heterogeneous solid acid catalyst for the one-pot synthesis of 2H-Indazolo[1,2-b]phthalazine-triones. Helv Chim Acta 93:1375–1380CrossRefGoogle Scholar
  31. 31.
    Sayyafi M, Seyyedhamzeh M, Khavasi HR, Bazgir A (2008) One-pot, three-component route to 2H-indazolo [2,1-b] phthalazine-triones. Tetrahedron 64:2375–2378CrossRefGoogle Scholar
  32. 32.
    Wang X, Ma WW, Wu LQ, Yan FL (2010) Synthesis of 2H-Indazolo[2,1-b] phthalazine- 1,6,11(13H)-trione derivatives using wet cyanuric chloride under solvent-free condition. J Chin Chem Soc 57:1341–1345CrossRefGoogle Scholar
  33. 33.
    Hamidian H, Fozooni S, Hassankhani A, Mohammadi SZ (2011) One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones via reaction of arylaldehydes with urazole and dimedone catalyzed by silica nanoparticles prepared from rice husk. Molecules 16:9041–9048CrossRefPubMedGoogle Scholar
  34. 34.
    Mouradzadegun A, Kiasat AR, Kazemian Fard P (2012) 3D-network porous polymer based on calix[4] resorcinarenes as an efficient phase transfer catalyst in regioselective conversion of epoxides to azidohydrins. Catal Commun 29:1–5CrossRefGoogle Scholar
  35. 35.
    Mouradzadegun A, Ghasem Hezave F, Karimnia M (2010) Reductive alkylation of pentaphenylthiopyrylium perchlorate: an approac to regiospecific synthesis of hexasubstituted 2H-thiopyrans. Phosphorus Sulfur Silicon Relat Elem 185:84–87CrossRefGoogle Scholar
  36. 36.
    Kiasat AR, Mouradzadegun A, Elahi S, Fallah-Mehrjardi M (2010) Al(HSO4)3/silica gel as a novel catalytic system for the ring opening of epoxides with thiocyanate anion under solvent-free conditions. Chin Chem Lett 21:146–150CrossRefGoogle Scholar
  37. 37.
    Mouradzadegun A, Abadast F (2013) An improved, safe, and efficient conversion of triarylpyrylium perchlorates to corresponding cyanodienones using amberlite. Monatsh Chem 144:375–379CrossRefGoogle Scholar
  38. 38.
    Mouradzadegun A, Mostafavi MA (2016) Copper-loaded hypercrosslinked polymer decorated with pendant amine groups: a green and retrievable catalytic system for quick [3 + 2] Huisgen cycloaddition in water. RSC Adv 6:42522–42531CrossRefGoogle Scholar
  39. 39.
    Mouradzadegun A, Gheitasvand N (2005) Efficient reduction of thiopyrylium salts to corresponding 2H- and 4H-thiopyrans under solvent-free condition: regioselectivity and mechanism. Phosphorus Sulfur Silicon Relat Elem 180:1385–1388CrossRefGoogle Scholar
  40. 40.
    Mouradzadegun A, Abadast F (2013) Thermally-induced ring contraction as a novel and straightforward route for the synthesis of 2-furyl acetonitrile derivatives. Tetrahedron Lett 54:2641–2644CrossRefGoogle Scholar
  41. 41.
    Mouradzadegun A, Elahi S, Abadast F (2014) One-pot synthesis of tweezer-like calix[4]resorcinarene decorated with pendant heterocyclic moieties: an efficient and recyclable heterogeneous ptc for the preparation of azidohydrins in water. Catal Lett 144:1636–1641CrossRefGoogle Scholar
  42. 42.
    Mouradzadegun A, Elahi S, Abadast F (2014) Synthesis of a 3D-network polymer supported Bronsted acid ionic liquid based on calix[4]-resorcinarene via two post-functionalization steps: a highly efficient and recyclable acid catalyst for the preparation of symmetrical bisamides. RSC Adv 4:31239–31248CrossRefGoogle Scholar
  43. 43.
    Mouradzadegun A, Abadast F (2014) An improved organic/inorganic solid receptor for colorimetric cyanide-chemosensing in water: towards new mechanism aspects, simplistic use and portability. Chem Commun 50:15983–15986CrossRefGoogle Scholar
  44. 44.
    Mouradzadegun A, Dianat S (2009) Facile and selective solvent-free synthesis of 2-isoxazolines under microwave irradiation. J Heterocycl Chem 46:778–781CrossRefGoogle Scholar
  45. 45.
    Tunstad LM, Tucker JA, Dalcanale E, Weiser J, Bryant JA, Sherman JC, Helgeson RC, Knobler CB, Cram DJ (1989) Host-guest complexation. 48. Octal building blocks for cavitands and carcerands. J Org Chem 54:1305–1312CrossRefGoogle Scholar
  46. 46.
    Altshuler H, Ostapova E, Fedyaeva O, Sapozhnikova L, Altshuler O (2002) Novel network polymers based on calixresorcinarenes. Macromol Symp 181:1–5CrossRefGoogle Scholar
  47. 47.
    Karimi B, Zareyee D (2008) Design of a highly efficient and water-tolerant sulfonic acid nanoreactor based on tunable ordered porous silica for the von Pechmann reaction. Org Lett 10:3989–3992CrossRefPubMedGoogle Scholar
  48. 48.
    Saha M, Phukan S, Jamatia R, Mitra S, Pal AK (2013) Solvent free, Ni-nanoparticle catalyzed greener synthesis and photophysical studies of novel 2H-indazolo[2,1-b] phthalazine-trione derivatives. RSC Adv 3:1714–1721CrossRefGoogle Scholar
  49. 49.
    Shukla G, Verma RK, Verma GK, Singh MS (2011) Solvent-free sonochemical one-pot three-component synthesis of 2H-indazolo [2,1-b] phthalazine-1, 6, 11-triones and 1H-pyrazolo [1,2-b] phthalazine-5, 10-diones. Tetrahedron Lett 52:7195–7198CrossRefGoogle Scholar
  50. 50.
    Mirhosseini-Eshkevari B, Ghasemzadeh MA, Safaei-Ghomi J (2015) An efficient and green one-pot synthesis of indazolo[1,2-b]-phthalazinetriones via three-component reaction of aldehydes, dimedone, and phthalhydrazide using Fe3O4@SiO2 core-shell nanoparticles. Res Chem Intermed 41:7703–7714CrossRefGoogle Scholar
  51. 51.
    Godajdar BM, Kiasat AR, Hashemi MM (2013) One-pot synthesis of 2H-indazolo [2,1-b] phthalazinetrione catalyzed by magnetic room temperature dicationic ionic liquid under solvent-free conditions. Heterocycles 87:559–570CrossRefGoogle Scholar
  52. 52.
    Alinasab Amiri A, Javanshir S, Dolatkhah Z, Dekamin MG (2015) SO3H-functionalized mesoporous silica materials as solid acid catalyst for facile and solvent-free synthesis of 2H-indazolo[2,1-b]phthalazine-1,6,11-trione derivatives. New J Chem 39:9665–9671CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Arash Mouradzadegun
    • 1
    • 2
    Email author
  • Mahsa Alsadat Mostafavi
    • 1
  • Mohammad Reza Ganjali
    • 2
    • 3
  1. 1.Department of Chemistry, Faculty of ScienceShahid Chamran UniversityAhvazIran
  2. 2.Center of Excellence in Electrochemistry, Faculty of ChemistryUniversity of TehranTehranIran
  3. 3.Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran

Personalised recommendations