Skip to main content
Log in

Catalytic performance of the modified H-ZSM-5 zeolite in methanol transformation to hydrocarbons

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

A Correction to this article was published on 23 February 2018

This article has been updated

Abstract

In the current work, we present the study of the catalytic performance and characterization of the modified H-ZSM-5 zeolite for methanol to hydrocarbons process. The modification of zeolite was performed by both alkali and acid treatment. The changes in the zeolite structure were studied using low-temperature nitrogen physisorption, NH3 chemisorption, and X-Ray photoelectron spectroscopy. It was found that the zeolite modification with oxalic acid (0.01 M) resulted in the lower catalytic activity loss (48%) after 120 h on stream as compared to both initial and alkali treated H-ZSM-5. Further, the chosen zeolite sample was modified with Co, Fe, and Ni by wet impregnation with the corresponding metal nitrates. The Ni-containing catalyst showed the highest catalytic performance in time on stream. The decrease in the methanol transformation rate for the Ni-containing zeolite was found to be only 27%. The metal-containing catalysts showed the minimal coke formation as well as the minimal decrease in acidity and surface area as compared to the initial zeolite and the samples treated with both alkali and oxalic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 23 February 2018

    The article was published without grant no in the acknowledgement. The complete acknowledgement is given in this correction.

Abbreviations

MTO:

Methanol to olefins

MTH:

Methanol to hydrocarbons

MTS:

Methanol to syn-fuel

DME:

Dimethyl ether

XPS:

X-ray photoelectron spectroscopy

TEM:

Transmission electron microscopy

References

  1. Lee E, Cheng Z, Lo CS (2015) Catalysis 27:187–208

    Article  CAS  Google Scholar 

  2. Sousa-Aguiar EF, Appel LG (2011) Catalysis 23:284–315

    Article  CAS  Google Scholar 

  3. Dinjus E, Arnold U, Dahmen N, Hofer R, Wach W (2009) In: Hofer R (ed) RSC green chemistry no. 4, sustainable solutions for modern economies. The Royal Society of Chemistry, London

    Google Scholar 

  4. Le Bel JA, Greene WH (1880) Am Chem J 2:19–20

    Google Scholar 

  5. Sernagiotto E (1914) Gazz Chim Ital 44(1):51–56

    Google Scholar 

  6. Grosse AV, Snyder JC (1950) US Patent 2493038A

  7. Topchiev KV, Ballod AV (1951) Russ Chem Rev 20(2):161–175

    Google Scholar 

  8. Gorin E, Gorin MH (1948) US Patent 2456584 A

  9. Chang CD, Silvestri AJ (1977) J Catal 47:249–259

    Article  CAS  Google Scholar 

  10. Chen NY, Reagan WJ (1979) J Catal 59:123–129

    Article  CAS  Google Scholar 

  11. Chang CD, Lang WH, Smith RL (1979) J Catal 56:169–173

    Article  CAS  Google Scholar 

  12. Harney BM, Mills GA (1980) Hydrocarb Process 64:67–71

    Google Scholar 

  13. Diebold J, Scahill J (1988) In: Soltes J, Milne TA (eds) Pyrolysis oils from biomass. American Chemical Society, Washington, DC

    Google Scholar 

  14. Chang CD (1999) In: Song C, Garces JM, Sugi Y (eds) Shape-selective catalysis: chemicals synthesis and hydrocarbon processing. American Chemical Society, Washington, DC

    Google Scholar 

  15. Baek S-C, Lee Y-J, Jun K-W, Hong SB (2009) Energy Fuels 23:593–598

    Article  CAS  Google Scholar 

  16. Chen D, Moljord K, Holmen A (2012) Microporous Mesoporous Mater 164:239–250

    Article  CAS  Google Scholar 

  17. Min H-K, Park MB, Hong SB (2010) J Catal 271:186–194

    Article  CAS  Google Scholar 

  18. Wang P, Huang L, Li J, Dong M, Wang J, Tatsumi T, Fan W (2015) RSC Adv 5:28794–28802

    Article  CAS  Google Scholar 

  19. Huang L, Wang P, Li J, Wang J, Fan W (2016) Microporous Mesoporous Mater 223:230–240

    Article  CAS  Google Scholar 

  20. Chen J, Liang T, Li J, Wang S, Qin Z, Wang P, Huang L, Fan W, Wang J (2016) ACS Catal 6:2299–2313

    Article  CAS  Google Scholar 

  21. Mei C, Wen P, Liu Z, Liu H, Wang Y, Yang W (2008) J Catal 25:8243–8249

    Google Scholar 

  22. Zaidi HA, Pant KK (2004) Catal Today 96:155–160

    Article  CAS  Google Scholar 

  23. Qi L, Wei Y, Xu L, Liu ZM (2015) ACS Catal 5(7):3973–3982

    Article  CAS  Google Scholar 

  24. Pérez-Uriarte P, Gamero M, Ateka A, Díaz M, Aguayo AT, Bilbao J (2016) Ind Eng Chem Res 55(6):1513–1521

    Article  CAS  Google Scholar 

  25. Beeckman JW, Froment GF (1979) Ind Eng Chem Fundam 18(3):245–256

    Article  CAS  Google Scholar 

  26. Beeckman JW, Froment GF (1982) Ind Eng Chem Fundam 27:243–250

    Article  Google Scholar 

  27. Benito PL, Gayubo AG, Aguayo AT, Olazar M, Bilbao J (1996) Ind Eng Chem Res 35:3991–3998

    Article  CAS  Google Scholar 

  28. Schulz H (2010) Catal Today 154:183–194

    Article  CAS  Google Scholar 

  29. Bleken FL, Barbera K, Bonino F, Olsbye U, Lillerud KP, Bordiga S, Beato P, Janssens TVW, Svelle S (2013) J Catal 307:62–73

    Article  CAS  Google Scholar 

  30. Brogaard RY, Weckhuysen BM, Nørskov JK (2013) J Catal 300:235–241

    Article  CAS  Google Scholar 

  31. Ramasamy KK, Gerber MA, Flake M, Zhang H, Wang Y (2014) Green Chem 16(2):748–760

    Article  CAS  Google Scholar 

  32. Palumbo L, Bonino F, Beato P, Bjørgen M, Zecchina A, Bordiga S (2008) J Phys Chem C 112:9710–9716

    Article  CAS  Google Scholar 

  33. Li M, Zhou Y, Ju C, Fang Y (2016) Appl Catal A 512:1–8

    Article  CAS  Google Scholar 

  34. Wan W, Fu T, Qi R, Shao J, Li Z (2016) Ind Eng Chem Res 55(51):13040–13049

    Article  CAS  Google Scholar 

  35. Wan Z, Wu W, Li GK, Wang C, Yang H, Zhang D (2016) Appl Catal A 523(5):312–320

    Article  CAS  Google Scholar 

  36. Meng F, Wang Y, Wang S (2016) RSC Adv 6:58586–58593

    Article  CAS  Google Scholar 

  37. Bjørgen M, Joensen F, Holm MS, Olsbye U, Lillerud K-P, Svelle S (2008) Appl Catal A 345:43–50

    Article  CAS  Google Scholar 

  38. Ahmadpour J, Taghizadeh M (2015) C R Chim 18(8):834–847

    Article  CAS  Google Scholar 

  39. He Y, Liu M, Dai C, Xu S, Wei Y, Liu Z, Guo X (2013) Chin J Catal 34:1148–1158

    Article  CAS  Google Scholar 

  40. Wang X, Gao X, Dong M, Zhao H, Huang W (2015) J Energy Chem 21(4):490–496

    Article  Google Scholar 

  41. Fattahi M, Behbahani RM, Hamoule T (2016) Fuel 181:248–258

    Article  CAS  Google Scholar 

  42. Sadeghi S, Haghighi M, Estifaee P (2015) J Na. Gas Sci Eng 24:302–310

    Article  CAS  Google Scholar 

  43. Dagle RA, Lizarazo-Adarme JA, Lebarbier Dagle V, Gray MJ, White JF, King DL, Palo D (2014) Fuel Process Technol 123:65–74

    Article  CAS  Google Scholar 

  44. Wang C, Zhang D, Fang C, Ge Q, Xu H (2014) Fuel 134:11–16

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonina A. Stepacheva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 265 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepacheva, A.A., Doluda, V.Y., Lakina, N.V. et al. Catalytic performance of the modified H-ZSM-5 zeolite in methanol transformation to hydrocarbons. Reac Kinet Mech Cat 124, 807–822 (2018). https://doi.org/10.1007/s11144-018-1359-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1359-3

Keywords

Navigation