Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 587–601 | Cite as

Comparison of NO conversion over Cu/M (M = TiO2, Al2O3, ZSM-5, carbon nanotubes, activated carbon) catalysts assisted by plasma

  • Tao Wang
  • Xinyu Zhang
  • Jun Liu
  • Hanzi Liu
  • Baomin Sun
Article
  • 117 Downloads

Abstract

NO conversion using dielectric barrier discharge (DBD) plasma with different catalysts was investigated. Cu/TiO2, Cu/Al2O3, Cu/ZSM-5, Cu/CNTs and Cu/AC catalysts were prepared by incipient wetness impregnation with 4 wt% Cu loaded. BET, SEM, XRD, XPS, H2-TPR, NH3-TPD were used to measure and evaluate various catalysts. Compared with the plasma only process, the combination of plasma with different catalysts significant improved the NO conversion rate. The highest NO conversion rate of 76% could be achieved with Cu/ZSM-5 catalyst at the energy density of 184 J/L. The results indicate that Cu species over the support ZSM-5 can produce high concentrations of CuO, largest specific surface area, largest amounts of acidity and lowest reduction temperature (209 °C), these factors conducive to plasma-catalyst reaction. Besides, Cu/TiO2 and Cu/Al2O3 catalysts exhibited excellent NO conversion at the low energy density because of the low thermal stability. After plasma-catalyst reaction, the reducibility of CuO and Cu2O over supports decreased and the peak position of acid sites shifted to lower temperature.

Keywords

Dielectric barrier discharge NO conversion Catalyst Plasma SCR 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (51706069).

Supplementary material

11144_2018_1358_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1422 kb)

References

  1. 1.
    Yuan EH, Han WL, Zhang GD, Zhao K, Mo ZL, Lu GX, Tang ZC (2016) Structural and textural characteristics of Zn-Containing ZSM-5 zeolites and application for the selective catalytic reduction of NOx with NH3 at High temperatures. Catal Surv Asia 20(1):41–52CrossRefGoogle Scholar
  2. 2.
    Wang T, Zhang XY, Liu HZ, Guo YH, Zhang YS, Wang Y, Sun BM (2017) A comparison of NO reduction over Mn–Cu/ZSM5 and Mn–Cu/MWCNTs Catalysts assisted by plasma at ambient temperature. Catal Surv Asia 21(2):94–102CrossRefGoogle Scholar
  3. 3.
    Wang H, Li XX, Chen M, Zheng XM (2013) The effect of water vapor on NOx storage and reduction in combination with plasma. Catal Today 211:66–71CrossRefGoogle Scholar
  4. 4.
    Wang T, Liu J, Zhang YS, Zhang HC, Chen WY, Norris P, Pan WP (2018) Use of a non-thermal plasma technique to increase the number of chlorine active sites on biochar for improved mercury removal. Chem Eng J 331:536–544CrossRefGoogle Scholar
  5. 5.
    Shi C, Zhang ZS, Crocker M, Xua L, Wang CY, Au CT, Zhu AM (2013) Non-thermal plasma-assisted NOx storage and reduction on a LaMn0.9Fe0.1O3 perovskite catalyst. Catal Today 211:96–103CrossRefGoogle Scholar
  6. 6.
    Bhattacharyya A, Rajanikanth BS (2015) Biodiesel exhaust treatment with HFAC plasma supported by red mud: study on DeNOx and power consumption. Energy Procedia 75:2371–2378CrossRefGoogle Scholar
  7. 7.
    Park SY, Deshwal BR, Moon SH (2008) NOx removal from the flue gas of oil-fired boiler using a multistage plasma-catalyst hybrid system. Fuel Process Technol 89(5):540–548CrossRefGoogle Scholar
  8. 8.
    Pangilinan CDC, Kurniawan W, Salim C, Hinode H (2016) Effect of Ag/TiO2 catalyst preparation on gas-phase benzene decomposition using non-thermal plasma driven catalysis under oxygen plasma. Reac Kinet Mech Cat 117(1):103–118CrossRefGoogle Scholar
  9. 9.
    Fan H, Shi C, Li X, Yang XF, Xu Y, Zhu AM (2009) Low-temperature NOx selective reduction by hydrocarbons on H-Mordenite catalysts in dielectric barrier discharge plasma. Plasma Chem Plasma Process 29(1):43–53CrossRefGoogle Scholar
  10. 10.
    Jõgi I, Bichevin V, Laan M, Haljaste A, Käämbre H (2009) NO conversion by dielectric barrier discharge and TiO2 catalyst: effect of oxygen. Plasma Chem Plasma Process 29(3):205–215CrossRefGoogle Scholar
  11. 11.
    Wang Z, Brouri D, Casale S, Delannoy L, Louis C (2016) Exploration of the preparation of Cu/TiO2 catalysts by deposition–precipitation with urea for selective hydrogenation of unsaturated hydrocarbons. J Catal 340:95–106CrossRefGoogle Scholar
  12. 12.
    Lee YH, Chung JW, Choi YR, Chung JS, Cho MH, Namkung W (2004) NOx removal characteristics in plasma plus catalyst hybrid process. Plasma Chem Plasma Process 24(2):137–154CrossRefGoogle Scholar
  13. 13.
    Wang T, Wan ZT, Yang XC, Zhang XY, Niu XX, Sun BM (2018) Promotional effect of iron modification on the catalytic properties of Mn-Fe/ZSM-5 catalysts in the Fast SCR reaction. Fuel Process Technol 169:112–121CrossRefGoogle Scholar
  14. 14.
    Parvulescu VI, Oelker P, Grange P, Delmon B (1998) NO decomposition over bicomponent Cu-Sm-ZSM-5 zeolites. Appl Catal B 16:1–17CrossRefGoogle Scholar
  15. 15.
    Pang L, Fan C, Shao L, Song KP, Yi JX, Cai X, Wang J, Kang M, Li T (2014) The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust. Chem Eng J 253:394–401CrossRefGoogle Scholar
  16. 16.
    Zhang ZS, Crocker M, Chen BB, Bai ZF, Wang XK, Shi C (2015) Pt-free, non-thermal plasma-assisted NOx storage and reduction over M/Ba/Al2O3(M = Mn, Fe Co, Ni, Cu) catalysts. Catal Today 256:115–123CrossRefGoogle Scholar
  17. 17.
    López-Suárez FE, Bueno-López A, Illán-Gómez MJ (2008) Cu/Al2O3 catalysts for soot oxidation: copper loading effect. Appl Catal B 84:651–658CrossRefGoogle Scholar
  18. 18.
    Zhang G, Li Z, Zheng H, Fu T, Ju Y, Wang Y (2015) Influence of the surface oxygenated groups of activated carbon on preparation of a nano Cu/AC catalyst and heterogeneous catalysis in the oxidative carbonylation of methanol. Appl Catal B 179:95–105CrossRefGoogle Scholar
  19. 19.
    Yi H, Zhao S, Tang X, Song C, Gao F, Zhang B, Wang Z, Zuo Y (2014) Low-temperature hydrolysis of carbon disulfide using the Fe-Cu/AC catalyst modified by non-thermal plasma. Fuel 128:268–273CrossRefGoogle Scholar
  20. 20.
    Liu L, Lou H, Chen M (2016) Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over Ni/CNTs and bimetallic Cu-Ni/CNTs catalysts. Int J Hydrogen Energy 41(33):14721–14731CrossRefGoogle Scholar
  21. 21.
    Yang H, Liao P (2007) Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol. Appl Catal A 317(2):226–233CrossRefGoogle Scholar
  22. 22.
    Li Q, Yang H, Ma Z, Zhang X (2012) Selective catalytic reduction of NO with NH3 over CuOx-carbonaceous materials. Catal Commun 17:8–12CrossRefGoogle Scholar
  23. 23.
    Sun X, Gong C, Lv G, Bin F, Song C (2014) Effect of Ce/Zr molar ratio on the performance of Cu-Cex-Zr1-x/TiO2 catalyst for selective catalytic reduction of NOx with NH3 in diesel exhaust. Mater Res Bull 60:341–347CrossRefGoogle Scholar
  24. 24.
    Zhu L, Zhang L, Qu H, Zhong Q (2015) A study on chemisorbed oxygen and reaction process of Fe–CuOx/ZSM-5 via ultrasonic impregnation method for low-temperature NH3-SCR. J Mol Catal A: Chem 409:207–215CrossRefGoogle Scholar
  25. 25.
    Chirumamilla VR, Hoeben WFLM, Beckers FJCM, Huiskamp T, Van Heesch EJM, Pemen AJM (2016) Experimental investigation on the effect of a microsecond pulse and a nanosecond pulse on NO removal using a pulsed DBD with catalytic materials. Plasma Chem Plasma Process 36(2):487–510CrossRefGoogle Scholar
  26. 26.
    Liu HZ, Wang T, Zhang XY, Guo YH, Sun BM (2017) Influence of the TiO2/multi-walled carbon nanotubes (MWCNTs) mass ratio on no removal over the Mn/TiO2(x)-MWCNTs(1 − x) catalyst assisted by plasma. Reac Kinet Mech Cat 121:735–749CrossRefGoogle Scholar
  27. 27.
    Wang T, Liu HZ, Zhang XY, Guo YH, Zhang YS, Wang Y, Sun BM (2017) A plasma-assisted catalytic system for NO removal over CuCe/ZSM-5 catalysts at ambient temperature. Fuel Process Technol 158:199–205CrossRefGoogle Scholar
  28. 28.
    Zhu L, Zeng Y, Zhang S, Deng J, Zhong Q (2017) Effects of synthesis methods on catalytic activities of CoOx-TiO2 for low-temperature NH3-SCR of NO. J Environ Sci 54:277–287CrossRefGoogle Scholar
  29. 29.
    Jiao Y, Zhang J, Du Y, Sun D, Wang J, Chen Y, Lu J (2016) Steam reforming of hydrocarbon fuels over M(Fe Co, Ni, Cu, Zn)-Ce bimetal catalysts supported on Al2O3. Int J Hydrogen Energ 41(24):10473–10482CrossRefGoogle Scholar
  30. 30.
    Kumar PA, Reddy MP, Ju LK, Hyun-Sook B, Phil HH (2008) Low temperature propylene SCR of NO by copper alumina catalyst. J Mol Catal A: Chem 291(1–2):66–74CrossRefGoogle Scholar
  31. 31.
    Bin F, Song C, Lv G, Song J, Wu S, Li X (2014) Selective catalytic reduction of nitric oxide with ammonia over zirconium-doped copper/ZSM-5 catalysts. Appl Catal B 150–151:532–543CrossRefGoogle Scholar
  32. 32.
    Boukha Z, Ayastuy JL, Iglesias-González A, Pereda-Ayo B, Gutiérrez-Ortiz MA, González-Velasco JR (2014) Preparation and characterization of CuO/Al2O3 films deposited onto stainless steel microgrids for CO oxidation. Appl Catal B 160–161:629–640CrossRefGoogle Scholar
  33. 33.
    Zhang G, Li Z, Zheng H, Hao Z, Wang X, Wang J (2016) Influence of surface oxygenated groups on the formation of active Cu species and the catalytic activity of Cu/AC catalyst for the synthesis of dimethyl carbonate. Appl Surf Sci 390:68–77CrossRefGoogle Scholar
  34. 34.
    Zhao B, Yi H, Tang X, Li Q, Liu D, Gao F (2016) Copper modified activated coke for mercury removal from coal-fired flue gas. Chem Eng J 286:585–593CrossRefGoogle Scholar
  35. 35.
    Belin T, Epron F (2005) Characterization methods of carbon nanotubes: a review. Mater Sci Eng B 119(2):105–118CrossRefGoogle Scholar
  36. 36.
    Su Y, Fan B, Wang L, Liu Y, Huang B, Fu M, Chen L, Ye D (2013) MnOx supported on carbon nanotubes by different methods for the SCR of NO with NH3. Catal Today 201:115–121CrossRefGoogle Scholar
  37. 37.
    Tuan L, Luong N, Ishihara K (2016) Low-temperature catalytic performance of Ni-Cu/Al2O3 catalysts for gasoline reforming to produce hydrogen applied in spark ignition engines. Catalysts 6(3):45CrossRefGoogle Scholar
  38. 38.
    Nanba T, Masukawa S, Ogata A, Uchisawa J, Obuchi A (2005) Active sites of Cu-ZSM-5 for the decomposition of acrylonitrile. Appl Catal B 61(3–4):288–296CrossRefGoogle Scholar
  39. 39.
    Urquieta-González EA, Martins L, Peguin RPS, Batista MS (2002) Identification of extra-framework species on Fe/ZSM-5 and Cu/ZSM-5 catalysts typical microporous molecular sieves with zeolitic structure. Mater Res 5(3):321–327CrossRefGoogle Scholar
  40. 40.
    Luo S, Zhou W, Xie A, Wu F, Yao C, Li X, Zuo S, Liu T (2016) Effect of MnO2 polymorphs structure on the selective catalytic reduction of NOx with NH3 over TiO2–Palygorskite. Chem Eng J 286:291–299CrossRefGoogle Scholar
  41. 41.
    Wang T, Zhang XY, Liu J, Liu HZ, Wang Y, Sun BM (2018) Effects of temperature on NOx removal with Mn-Cu/ZSM5 catalysts assisted by plasma. Appl Therm Eng 130:1224–1232CrossRefGoogle Scholar
  42. 42.
    Hu X, Yang M, Fan D, Qi G, Wang J, Wang J, Yu T, Li W, Shen M (2016) The role of pore diffusion in determining NH3 SCR active sites over Cu/SAPO-34 catalysts. J Catal 341:55–61CrossRefGoogle Scholar
  43. 43.
    Zhao X, Huang L, Li H, Hu H, Han J, Shi L, Zhang D (2015) Highly dispersed V2O5/TiO2 modified with transition metals (Cu, Fe, Mn, Co) as efficient catalysts for the selective reduction of NO with NH3. Chin J Catal 36(11):1886–1899CrossRefGoogle Scholar
  44. 44.
    Zhang T, Liu J, Wang D, Zhao Z, Wei Y, Cheng K, Jiang G, Duan A (2014) Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe–Cu nanocomposite catalysts: the Fe–Cu bimetallic effect. Appl Catal B 148:520–531CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Tao Wang
    • 1
    • 2
  • Xinyu Zhang
    • 1
  • Jun Liu
    • 1
  • Hanzi Liu
    • 1
  • Baomin Sun
    • 1
  1. 1.Education Ministry Key Laboratory on Condition Monitoring and Control of Power Plant EquipmentNorth China Electric Power UniversityBeijingChina
  2. 2.Institute of Energy Environmental Science and EngineeringNorth China Electric Power UniversityBeijingChina

Personalised recommendations