Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 124, Issue 2, pp 839–855 | Cite as

Synthesis and characterization of N-hydroxyphthalimide immobilized on NaY nano-zeolite as a novel and efficient catalyst for the selective oxidation of hydrocarbons and benzyl alcohols

  • Rahman Hosseinzadeh
  • Mohammad Mavvaji
  • Mahmood Tajbakhsh
  • Zahra Lasemi
Article
  • 103 Downloads

Abstract

In this study, N-hydroxyphthalimide (NHPI) was successfully immobilized on functionalized NaY nano-zeolite. As a new recoverable catalyst, the obtained NHPI immobilized on NaY nano-zeolite was characterized by FT-IR, XRD, TGA, BET, TEM and FESEM-EDX analyzes. The prepared catalyst exhibited high selectivity for oxidation of various hydrocarbons and benzyl alcohols in the presence of hydrogen peroxide as oxidant. The catalyst can be readily separated from the reaction mixture and reused several times without significant loss of catalytic activity.

Keywords

N-Hydroxyphthalimide NaY nano-zeolite Catalytic oxidation Hydrogen peroxide Hydrocarbons Benzyl alcohols 

Notes

Acknowledgements

Financial support of this work from the Research Council of the University of Mazandaran is gratefully acknowledged.

Supplementary material

11144_2018_1354_MOESM1_ESM.docx (5.4 mb)
Supplementary material 1 (DOCX 5565 kb)

References

  1. 1.
    Bäckvall JE (2012) Modern oxidation methods. Wiley, WeinheimGoogle Scholar
  2. 2.
    Mallat T, Baiker A (2004) Chem Rev 104:3037–3058CrossRefGoogle Scholar
  3. 3.
    Hudlicky M (1990) Oxidations in organic chemistry. American Chemical Society, WashingtonGoogle Scholar
  4. 4.
    Ley SV, Madfin A (1991) Comprehensive organic synthesis. Pergamon, OxfordGoogle Scholar
  5. 5.
    Aurich HG, Hahn K, Stork K, Weiss W (1977) Tetrahedron 33:969–975CrossRefGoogle Scholar
  6. 6.
    Recupero F, Punta C (2007) Chem Rev 107:3800–3842CrossRefGoogle Scholar
  7. 7.
    Coseri S (2009) Cat Rev Sci Eng 51:218–292CrossRefGoogle Scholar
  8. 8.
    Ishii Y, Nakayama K, Takeno M, Sakaguchi S, Iwahama T, Nishiyama Y (1995) J Org Chem 60:3934–3935CrossRefGoogle Scholar
  9. 9.
    Ishii Y, Sakaguchi S, Iwahama T (2001) Adv Synth Catal 343:393–427CrossRefGoogle Scholar
  10. 10.
    Amorati R, Lucarini M, Mugnaini V, Pedulli GF, Minisci F, Recupero F, Fontana F, Astolf P, Greci L (2003) J Org Chem 68:1747–1754CrossRefGoogle Scholar
  11. 11.
    Baciocchi E, Bietti M, Gerini MF, Lanzalunga O (2005) J Org Chem 70:5144–5149CrossRefGoogle Scholar
  12. 12.
    Melone L, Gambarotti C, Prosperini S, Pastori N, Recupero F, Punta C (2011) Adv Synth Catal 353:147–154CrossRefGoogle Scholar
  13. 13.
    Minisci F, Gambarotti C, Pierini M, Porta O, Punta C, Recupero F, Lucarini M, Mugnaini V (2006) Tetrahedron Lett 47:1421–1424CrossRefGoogle Scholar
  14. 14.
    Minisci F, Recupero F, Punta C, Gambarotti C, Antonietti F, Fontana F, Pedulli GF (2002) Chem Commun 21:2496–2497CrossRefGoogle Scholar
  15. 15.
    Wentzel BB, Donners MPJ, Feiters MC, Alsters PL, Nolte RJM (2000) Tetrahedron 56:7797–7803CrossRefGoogle Scholar
  16. 16.
    Orlinska B (2010) Tetrahedron Lett 51:4100–4102CrossRefGoogle Scholar
  17. 17.
    Jiang J, Jing Y, Zhang Y, Zhang N, Jiao J, Zhu W, Xue H, Zong Y, Yang G (2011) Catal Lett 141:544–548CrossRefGoogle Scholar
  18. 18.
    Figiel PJ, Sobczak JM (2009) J Catal 263:167–172CrossRefGoogle Scholar
  19. 19.
    Melone L, Punta C (2013) Beilstein J Org Chem 9:1296–1310CrossRefGoogle Scholar
  20. 20.
    Aoki Y, Hirai N, Sakaguchi S, Ishii Y (2005) Tetrahedron 61:10995–10999CrossRefGoogle Scholar
  21. 21.
    Yang G, Ma Y, Xu J (2004) J Am Chem Soc 126:10542–10543CrossRefGoogle Scholar
  22. 22.
    Tong X, Xu J, Miao H (2005) Adv Synth Catal 347:1953–1957CrossRefGoogle Scholar
  23. 23.
    Clerici MG, Kholdeeva OA (2013) Liquid phase oxidation via heterogeneous catalysis: Organic synthesis and industrial applications. Wiley, HobokenCrossRefGoogle Scholar
  24. 24.
    Arshadi M, Ghiaci M (2011) Appl Catal A 399:75–86CrossRefGoogle Scholar
  25. 25.
    Huang G, Wang AP, Liu SY, Guo YA, Zhou H, Zhao SK (2007) Catal Lett 114:174–177CrossRefGoogle Scholar
  26. 26.
    Rajabi F, Clark JH, Karimi B, Macquarrie DJ (2005) Org Biomol Chem 3:725–726CrossRefGoogle Scholar
  27. 27.
    Hermans I, Van Deun J, Houthoofd K, Peeters J, Jacobs PA (2007) J Catal 251:204–212CrossRefGoogle Scholar
  28. 28.
    Jian M, Jianlan C, Dongmei L, Meina X (2016) RSC Adv 6:68170–68177CrossRefGoogle Scholar
  29. 29.
    Su S, Giguere JR, Schaus SE, Porco JA (2004) Tetrahedron 60:8645–8657CrossRefGoogle Scholar
  30. 30.
    Li X, Guo L, He P, Yuan X, Jiao F (2017) Catal Lett 147:856–864CrossRefGoogle Scholar
  31. 31.
    Zhou M, Li X, Bao L, Yuan X, Luo HA (2016) Catal Lett 146:383–390CrossRefGoogle Scholar
  32. 32.
    Kasperczyk K, Orlinska B, Witek E, Łatka P, Zawadiak J, Proniewicz L (2015) Catal Lett 145:1856–1867CrossRefGoogle Scholar
  33. 33.
    Koguchi S, Kitazume T (2006) Tetrahedron Lett 47:2797–2801CrossRefGoogle Scholar
  34. 34.
    Wang JR, Liu L, Wang YF, Zhang Y, Deng W, Guo QX (2005) Tetrahedron Lett 46:4647–4651CrossRefGoogle Scholar
  35. 35.
    Breck DW (1973) Zeolite molecular sieves: structure, chemistry and use. Wiley, New YorkGoogle Scholar
  36. 36.
    Jappar N, Xia QH, Tatsumi T (1998) J Catal 180:132–141CrossRefGoogle Scholar
  37. 37.
    Xia QH, Shen SC, Song J, Kawi S, Hidajat K (2003) J Catal 219:74–84CrossRefGoogle Scholar
  38. 38.
    Li H, Ma H, Wang X, Gao J, Chen C, Shi S, Qu M, Feng N, Xu J (2014) J Energy Chem 23:742–746CrossRefGoogle Scholar
  39. 39.
    Mobinikhaledi A, Zendehdel M, Safari P (2013) Reac Kinet Mech Cat 110:497–514CrossRefGoogle Scholar
  40. 40.
    Xu B, Sievers C, Hong SB, Prins R, Van Bokhoven JA (2006) J Catal 244:163–168CrossRefGoogle Scholar
  41. 41.
    Verboekend D, Nuttens N, Locus R, Van Aelst J, Verolme P, Groen JC, Perez-Ramirez J, Sels BF (2016) Chem Soc Rev 45:3331–3352CrossRefGoogle Scholar
  42. 42.
    Briend-Faure M, Cornu O, Delafosse D, Monque R, Peltre MJ (1988) Appl Catal 38:71–87CrossRefGoogle Scholar
  43. 43.
    Ram S, Ehrenkaufer RE (1984) Tetrahedron Lett 25:3415–3418CrossRefGoogle Scholar
  44. 44.
    Eliel EL, Burgstahler AW, Rivard DE, Haefele L (1955) J Am Chem Soc 77:5092–5095CrossRefGoogle Scholar
  45. 45.
    Merrill SH (1960) J Org Chem 25:1882–1883CrossRefGoogle Scholar
  46. 46.
    Merrill SH, Unruh CC (1961) Azidophthalic anhydrides: U.S. Patent No. 3,002,003. Washington DC, U.S. Patent and Trademark OfficeGoogle Scholar
  47. 47.
    Smith BC (2016) Spectroscopy 31:14–21Google Scholar
  48. 48.
    de Peña YP, Rondón W (2013) Am J Analyt Chem 4:387CrossRefGoogle Scholar
  49. 49.
    Shields JE, Lowell S, Thomas MA, Thommes M (2004) Characterization of porous solids and powders: surface area, pore size and density. Kluwer Academic Publisher, BostonGoogle Scholar
  50. 50.
    Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  51. 51.
    Sanaeepur H, Kargari A, Nasernejad B (2014) RSC Adv 4:63966–63976CrossRefGoogle Scholar
  52. 52.
    Bray WC, Livingston RS (1928) J Am Chem Soc 50:1654–1665CrossRefGoogle Scholar
  53. 53.
    Baxendale JH (1952) Adv Catal 4:31–86Google Scholar
  54. 54.
    Minisci F, Punta C, Recupero F, Fontana F, Pedulli GF (2002) Chem Commun 7:688–689CrossRefGoogle Scholar
  55. 55.
    Du Z, Sun Z, Zhang W, Miao H, Ma H, Xu J (2009) Tetrahedron Lett 50:1677–1680CrossRefGoogle Scholar
  56. 56.
    Łątka P, Kasperczyk K, Orlińska B, Drozdek M, Skorupska B, Witek E (2016) Catal Lett 146:1991–2000CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  • Rahman Hosseinzadeh
    • 1
  • Mohammad Mavvaji
    • 1
  • Mahmood Tajbakhsh
    • 1
  • Zahra Lasemi
    • 2
  1. 1.Department of Organic Chemistry, Faculty of ChemistryUniversity of MazandaranBabolsarIran
  2. 2.Department of Chemistry, Firoozkooh BranchIslamic Azad UniversityFiroozkoohIran

Personalised recommendations