Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 2, pp 975–985 | Cite as

Synthesis and catalytic activity of vanadium phosphorous oxides systems supported on silicon carbide for the selective oxidation of n-butane to maleic anhydride

  • N. D. ShcherbanEmail author
  • E. A. Diyuk
  • V. V. Sydorchuk
Article
  • 50 Downloads

Abstract

VPO catalysts supported on silicon carbide were prepared using the solvothermal method. A decrease the reaction temperature by 70 °C under application of SiC, prepared from sucrose and fumed silica, as a support for an active VPO phase compared to a bulk VPO catalyst prepared under similar synthesis conditions was demonstrated. A twofold increase of the productivity towards maleic anhydride was reached. The higher specific reaction rate of n-butane oxidation over prepared supported VPO-SiC systems compared to the bulk VPO catalyst was shown. Use of an environmentally safe support allowed to reduce an amount of active vanadium-containing phase, and an application of the solvothermal method decreased the synthesis duration and an amount of organic solvent compared to the traditional approaches to the synthesis of VPO systems.

Keywords

VPO catalyst n-Butane oxidation Maleic anhydride Silicon carbide Solvothermal method Productivity 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Centi G, Cavani F, Trifiro F (2001) Selective oxidation by heterogeneous catalysis. Kluwer Academic Publishers, New YorkCrossRefGoogle Scholar
  2. 2.
    Sobalik Z, Gonzalez S, Ruiz P (1995) Influence of the precursor formation stage in the preparation of VPO catalysts for selective oxidation of n-pentane. Stud Surf Sci Catal 91:727–736CrossRefGoogle Scholar
  3. 3.
    Zazhigalov VA, Haber J, Stoch J, Mikhajluk BD, Pyatnitskaya AI, Komashko GA, Bacherikova IV (1996) A novel route in partial oxidation of n-pentane over the VPO catalysts: formation of citraconic anhydride. Catal Lett 37:95–99CrossRefGoogle Scholar
  4. 4.
    Gribot-Perrin N, Volta J-C, Burrows A, Kiely C, Gubelmann-Bonneau M (1996) On the role of microstructure of vanadium phosphorus oxides for propane oxidation to acrylic acid. Stud Surf Sci Catal 101:1205–1214CrossRefGoogle Scholar
  5. 5.
    Bartley JK, Kiely CJ, Wells RPK, Hutchings GJ (2001) Vanadium(V) phosphate prepared using solvent-free method. Catal Lett 72:99–105CrossRefGoogle Scholar
  6. 6.
    Lopez-Sanchez JA, Griesal L, Bartley JK (2003) High temperature preparation of vanadium phosphate catalysts using water as solvent. Phys Chem Chem Phys 5:3525–3533CrossRefGoogle Scholar
  7. 7.
    Bartley JK, Lopez-Sanchez JA, Hutchings GJ (2003) Preparation of vanadium phosphate catalysts using water as solvent. Catal Today 81:197–203CrossRefGoogle Scholar
  8. 8.
    Hutchings GJ (2004) Vanadium phosphate: a new look at the active components of catalysts for the oxidation of butane to maleic anhydride. J Mater Chem 14:3385–3395CrossRefGoogle Scholar
  9. 9.
    Tauffiq-Yap YH, Leong LK, Hussein MZ, Irmawati R, Hamid SA (2004) Synthesis and characterisation of vanadyl pyrophosphate catalysts via vanadyl hydrogen phosphate sesquihydrate precursor. Catal Today 93:715–722CrossRefGoogle Scholar
  10. 10.
    Roy M, Gubelmann-Bonneau M, Ponceblanc H, Volta JC (1996) Vanadium-molybdenum phosphates supported by TiO2-anatase as new catalysts for selective oxidation of ethane to acetic acid. Catal Lett 42:93–97CrossRefGoogle Scholar
  11. 11.
    Bethke GK, Wang D, Bueno JMC, Kung MC, Kung HH (1997) Alkane oxidation over bulk and silica-supported VO (H.PO.),-derived catalysts. Third World Congress on Oxidation Catalysis, 110, ElsevierGoogle Scholar
  12. 12.
    Santamarı́a-González J, Martı́nez-Lara M, Bañares MA, Martı́nez-Huerta MV, Rodrı́guez-Castellón E, Fierro JLG, Jiménez-López A (1999) Nature of vanadium sites in V/α-Ti phosphate catalysts for the oxidative dehydrogenation of ethane. J Catal 181:280–284CrossRefGoogle Scholar
  13. 13.
    Ciambelli P, Galli P, Lisi L, Massucci MA, Patrono P, Pirone R, Ruoppolo G, Russo G (2000) TiO2 supported vanadyl phosphate as catalyst for oxidative dehydrogenation of ethane to ethylene. Appl Catal A Gen 203:133–142CrossRefGoogle Scholar
  14. 14.
    Guliants VV, Benziger JB, Sundaresan S, Wachs IE (2000) Molecular structure–reactivity relationships in n-butane oxidation over bulk VPO and supported vanadia catalysts: lessons for molecular engineering of new selective catalysts for alkane oxidation. Stud Surf Sci Catal 130:1721–1726CrossRefGoogle Scholar
  15. 15.
    Ledoux MJ, Crouzet C, Pham-Huu C, Turines V, Kourtakis K, Mills PL, Lerou JJ (2001) High-yield butane to maleic anhydride direct oxidation on vanadyl pyrophosphate supported on heat-conductive materials: β-SiC, Si3N4, and BN. J Catal 203:495–508CrossRefGoogle Scholar
  16. 16.
    Sidorchuk VV, Skubiszewska-Zięba J, Khalameida SV, Zazhigalov VA, Leboda R (2008) Synthesis of vanadium-phosphorus oxide catalysts deposited onto silica-carbon supports. Russ J Appl Chem 81:1325–1331CrossRefGoogle Scholar
  17. 17.
    Sidorchuk VV, Khalameida SV, Zazhigalov VA (2009) Hydrothermal deposition of vanadium phosphates onto carbon materials. Russ J Appl Chem 82:343–351CrossRefGoogle Scholar
  18. 18.
    Zazhigalov VA, Diyuk EA, Sidorchuk VV, Mironyuk TI (2009) Synthesis of vanadium–phosphorus oxide catalysts supported on pyrogenic silica and titanium dioxide. Kinet Catal 50:587–596CrossRefGoogle Scholar
  19. 19.
    Zazhigalov VA, Diyuk EA, Sidorchuk VV (2014) Development of VPO catalysts supported on mesoporous modified carriers based on an aerosil gel. Kinet Catal 55:380–389CrossRefGoogle Scholar
  20. 20.
    Zazhigalov VA, Bogutskaya LV, Lyashenko LV, Bacherikova IV (1997) Understanding the surface chemistry for supported vanadium oxide systems modified with phosphorus oxide at hydrocarbons oxidation. Stud Surf Sci Catal 110:787–796CrossRefGoogle Scholar
  21. 21.
    Duong-Viet C, Ba H, El-Berrichi Z, Nhut JM, Ledoux MJ, Liu Y, Pham- Huu C (2016) Silicon carbide foam as a porous support platform for catalytic applications. New J Chem 40:4285–4299CrossRefGoogle Scholar
  22. 22.
    Borchardt L, Hoffmann C, Oschatz M, Mammitzsch L, Petasch U, Herrmann M, Kaskel S (2012) Preparation and application of cellular and nanoporous carbides. Chem Soc Rev 41:5053–5067CrossRefGoogle Scholar
  23. 23.
    Shcherban ND (2017) Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide. J Ind Eng Chem 50:15–28CrossRefGoogle Scholar
  24. 24.
    Shcherban ND, Filonenko SM, Yaremov PS, Sergiienko SA, Ilyin VG, Murzin DYu (2017) Carbothermal synthesis of porous silicon carbide using mesoporous silicas. J Mater Sci 52:3917–3926CrossRefGoogle Scholar
  25. 25.
    Sydorchuk V, Zazhigalov V, Khalameida S, Diyuk E, Skubiszewska-Zięba J, Leboda R, Kuznetsova L (2010) Solvothermal synthesis of vanadium phosphates in the form of xerogels, aerogels and mesostructures. Mater Res Bull 45:1096–1105CrossRefGoogle Scholar
  26. 26.
    Gregg SG, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, New YorkGoogle Scholar
  27. 27.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380CrossRefGoogle Scholar
  28. 28.
    Abdelouahab FB, Olier R, Guilhaume N, Lefebvre F, Volta JC (1992) A study by in situ laser Raman spectroscopy of VPO catalysts for n-butane oxidation to maleic anhydride I. Preparation and characterization of pure reference phases. J Catal 134:151–167CrossRefGoogle Scholar
  29. 29.
    Amorós P, Ibáñez R, Martínez-Tamayo E, Beltrán-Porter A, Beltrán-Porter D, Villeneuve G (1989) New vanadyl hydrogenphosphate hydrates. Electronic spectra of the VO2+ ion in the VO (HxPO4)x·yH2O system. Mater Res Bull 24:1347–1360CrossRefGoogle Scholar
  30. 30.
    Doi T, Miyake T (1997) Influence of alcohol solvents on characters of VOHPO4·0.5H2O prepared from V4O9 and ortho-H3PO4. Appl Catal 164:141–148CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.L.V. Pisarzhevsky Institute of Physical ChemistryNational Academy of Sciences of UkraineKievUkraine
  2. 2.Institute for Sorption and Problems of EndoecologyNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations