Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 1, pp 61–82 | Cite as

Kinetics and isotherm modeling of phenol adsorption by immobilizable activated carbon

  • N. N. BahrudinEmail author
  • M. A. Nawi
  • Lelifajri
Article
  • 57 Downloads

Abstract

For the present study, activated carbon–epoxidized natural rubber–poly(vinyl)chloride composite was fabricated on the glass plates to remove phenol from the aqueous solution. The best fitting of kinetics and isotherm modeling was established using the nonlinear and linear regression analyses. The statistical functions such as R2, χ2 and RMSE were used to determine the best-fitting of the adsorption modeling. It was found that the adsorption data best-fitted the PSO kinetics model for both nonlinear and linear regression analyses. The best-fitting isotherm models for both analyses was the Freundlich model with the highest R2 and lowest χ2 and RMSE values among all models. The intraparticle diffusion was the sole rate-controlling step during the phenol uptake onto the immobilized AC composite. The plot exhibited multilinear portions, which corresponded to three stages of adsorption. The nonlinear regression modeling for kinetics and isotherm achieved higher R2 with lower χ2 and RMSE values as compared to the linear regression showing that the former analysis is more robust, accurate and consistent than the latter approach. Based on the results of the analysis, it is highly recommended to use nonlinear regression when dealing with the adsorption data for the specific and accurate fitting of kinetics and isotherm models.

Keywords

Activated carbon Adsorption kinetics Adsorption isotherm Linear regression Nonlinear regression Phenol 

Abbreviations

KL

Langmuir constant (L mg−1)

qm

Maximum adsorption capacity (mg g−1)

bT

Temkin isotherm constant

KT

Temkin isotherm equilibrium binding constant (L g−1)

Kad

Dubinin–Radushkevich isotherm constant (mol2 kJ−2)

ε

Dubinin–Radushkevich isotherm constant

qd

Theoretical isotherm saturation capacity (mg g−1)

KR

Redlich–Peterson isotherm constant (L g−1)

AR

Redlich–Peterson isotherm constant (mg−1)

g

Redlich–Peterson isotherm exponent

PAN

Polyacrylonitrile

PET

Polyehtylene terephthalate

R

Universal gas constant (8.314 J mol−1 K−1)

Notes

Acknowledgements

The authors would like to acknowledge Universiti Sains Malaysia (USM) for providing the research facilities and grant (PRGS: 1001/PKIMIA/843040). N.N. Bahrudin was thankful to USM for Graduate Assistant appointment and Malaysian Ministry of Education for the Mini Budget scholarship.

References

  1. 1.
    Streicher J, Ruhl AS, Gnirß R, Jekel M (2016) Chemosphere 156:88–94Google Scholar
  2. 2.
    Jawad AH, Rashid RA, Ishak MAM, Wilson LD (2016) Desalin Water Treat 57:25194–25206Google Scholar
  3. 3.
    Bedin KC, Martins AC, Cazetta AL, Pezoti O, Almeida VC (2016) Chem Eng J 286:476–484Google Scholar
  4. 4.
    Anisuzzaman SM, Joseph CG, Krishnaiah D, Bono A, Suali E, Abang S, Fai LM (2016) Water Res Ind 16:29–36Google Scholar
  5. 5.
    Wong S, Lee Y, Ngadi N, Inuwa IM, Mohamed NB (2017) Chin J Chem Eng 26:1003–1011Google Scholar
  6. 6.
    Sudhakar P, Soni H (2018) J Env Chem Eng 6:3135–3149Google Scholar
  7. 7.
    Torrellas SÁ, García Lovera R, Escalona N, Sepúlveda C, Sotelo JL, García J (2015) Chem Eng J 279:788–798Google Scholar
  8. 8.
    Ahmad R, Ahmad Z, Khan AU, Mastoi NR, Aslam M, Kim J (2016) J Environ Chem Eng 4:4143–4164Google Scholar
  9. 9.
    Nyamukamba P, Okoh O, Tichagwa L, Greyling C (2016) Int J Photoenergy 2016.  https://doi.org/10.1155/2016/3162976 Google Scholar
  10. 10.
    Murgolo S, Yargeau V, Gerbasi R, Visentin F, El Habra N, Ricco G, Lacchetti I, Carere M, Curri ML, Mascolo G (2017) Chem Eng J 318:103–111Google Scholar
  11. 11.
    Nawi MA, Kean LC, Tanaka K, Jab MS (2003) Appl Catal B 46:165–174Google Scholar
  12. 12.
    Srikanth B, Goutham R, Narayan RB, Ramprasath A, Gopinath K, Sankaranarayanan A (2017) J Environ Manage 200:60–78Google Scholar
  13. 13.
    Ghoreishian SM, Badii K, Norouzi M, Malek K (2016) Appl Surf Sci 365:252–262Google Scholar
  14. 14.
    Nawi MA, Sabar S (2012) Sheilatina. J Colloid Interface Sci 372:80–87Google Scholar
  15. 15.
    Bahrudin NN, Nawi MA, Nawawi WI (2018) Mater Res Bull 106:388–395Google Scholar
  16. 16.
    Bahrudin NN, Nawi MA (2018) Korean J Chem Eng 35:1532–1541Google Scholar
  17. 17.
    Ngoh YS, Nawi MA (2016) Int J Environ Sci Technol 13:907–926Google Scholar
  18. 18.
    Wan Ismail WIN, Ain S, Zaharudin R, Jawad AH, Ishak M, Ismail K, Sahid S (2015) Int J Photoenergy 2015Google Scholar
  19. 19.
    Foo KY, Hameed BH (2010) Chem Eng J 156:2–10Google Scholar
  20. 20.
    Tan KL, Hameed BH (2017) J Taiwan Inst Chem Eng 74:25–48Google Scholar
  21. 21.
    Behera SK, Kim J-H, Guo X, Park H-S (2008) J Hazard Mater 153:1207–1214Google Scholar
  22. 22.
    Nebaghe KC, El Boundati Y, Ziat K, Naji A, Rghioui L, Saidi M (2016) Fluid Phase Equilib 430:188–194Google Scholar
  23. 23.
    Vrtoch Ľ, Augustín J (2009) Nova Biotechnol 9:199–204Google Scholar
  24. 24.
    Kumar KV (2006) J Hazard Mater 136:197–202Google Scholar
  25. 25.
    Kumar KV, Porkodi K, Rocha F (2008) J Hazard Mater 150:158–165Google Scholar
  26. 26.
    Chowdhury S, Das Saha P (2011) Bioremediat J 15:181–188Google Scholar
  27. 27.
    Lente G (2018) Curr Opin Chem Eng 21:76–83Google Scholar
  28. 28.
    Bahrudin NN, Nawi MA (2018) React Kinet Mech Cat 124:153–169Google Scholar
  29. 29.
    Nawi MA, Zain SM (2012) Appl Surf Sci 258:6148–6157Google Scholar
  30. 30.
    Nawi MA, Jawad AH, Sabar S, Ngah WSW (2011) Desalination 280:288–296Google Scholar
  31. 31.
    Atieh MA (2014) APCBEE Procedia 10:136–141Google Scholar
  32. 32.
    Yousef RI, El-Eswed B, Ala’a H (2011) Chem Eng J 171:1143–1149Google Scholar
  33. 33.
    Sabar S, Nawi MA (2016) Desalin Water Treat 57:10312–10323Google Scholar
  34. 34.
    Nagy B, Mânzatu C, Măicăneanu A, Indolean C, Barbu-Tudoran L, Majdik C (2017) Arab J Chem 10:S3569–S3579Google Scholar
  35. 35.
    Ghaffari HR, Pasalari H, Tajvar A, Dindarloo K, Goudarzi B, Alipour V, Ghanbarneajd A (2017) Int J Eng Sci 6:1–11Google Scholar
  36. 36.
    Wu F-C, Tseng R-L, Juang R-S (2009) Chem Eng J 150:366–373Google Scholar
  37. 37.
    Dawodu M, Akpomie K (2016) Alexandria Eng J 55:3211–3218Google Scholar
  38. 38.
    Inyinbor AA, Adekola FA, Olatunji GA (2016) Water Res Ind 15:14–27Google Scholar
  39. 39.
    Lorenc-Grabowska E, Gryglewicz G, Diez M (2013) Fuel 114:235–243Google Scholar
  40. 40.
    Bahrudin NN, Nawi MA, Nawawi WI (2018) Korean J Chem Eng 35:1450–1461Google Scholar
  41. 41.
    Al-Degs YS, El-Barghouthi MI, Issa AA, Khraisheh MA, Walker GM (2006) Water Res 40:2645–2658Google Scholar
  42. 42.
    Simonin J-P (2016) Chem Eng J 300:254–263Google Scholar
  43. 43.
    Li B, Sun K, Guo Y, Tian J, Xue Y, Sun D (2013) Fuel 110:99–106Google Scholar
  44. 44.
    Carmona M, Garcia MT, Carnicer A, Madrid M, Rodríguez JF (2014) J Chem Technol Biotechnol 89:1660–1667Google Scholar
  45. 45.
    Liu Q-S, Zheng T, Wang P, Jiang J-P, Li N (2010) Chem Eng J 157:348–356Google Scholar
  46. 46.
    Abdel-Ghani NT, El-Chaghaby GA, Helal FS (2015) J Adv Res 6:405–415Google Scholar
  47. 47.
    Yang G, Chen H, Qin H, Feng Y (2014) Appl Surf Sci 293:299–305Google Scholar
  48. 48.
    Asmaly HA, Abussaud B, Saleh TA, Gupta VK, Atieh MA (2015) J Saudi Chem Soc 19:511–520Google Scholar
  49. 49.
    Yang G, Tang L, Zeng G, Cai Y, Tang J, Pang Y, Zhou Y, Liu Y, Wang J, Zhang S (2015) Chem Eng J 259:854–864Google Scholar
  50. 50.
    Lorenc-Grabowska E, Diez MA, Gryglewicz G (2016) J Colloid Interface Sci 469:205–212Google Scholar
  51. 51.
    Strachowski P, Bystrzejewski M (2015) Colloids Surf Physicochem Eng Aspects 467:113–123Google Scholar
  52. 52.
    Weber WJ, Morris JC (1963) J Sanit Eng Div 89:31–60Google Scholar
  53. 53.
    Tran HN, You S-J, Chao H-P (2017) J Environ Manage 188:322–336Google Scholar
  54. 54.
    Moreno-Castilla C (2004) Carbon 42:83–94Google Scholar
  55. 55.
    Catherine HN, Ou M-H, Manu B, Shih Y-H (2018) Sci Total Environ 635:629–638Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.School of Chemical SciencesUniversiti Sains MalaysiaPenangMalaysia
  2. 2.Department of Chemistry, Faculty of Mathematics and Natural SciencesUniversitas Syiah KualaBanda AcehIndonesia

Personalised recommendations