Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 2, pp 841–855 | Cite as

Effects of medium and nickel salt source in the synthesis and catalytic performance of nano-sized nickel in the Suzuki-Miyaura cross-coupling reaction

  • Adél Anna Ádám
  • Márton Szabados
  • Katalin Musza
  • Péter Bélteky
  • Zoltán Kónya
  • Ákos Kukovecz
  • Pál Sipos
  • István PálinkóEmail author


In this contribution, the influence of the origin of the nickel salts and the applied temperature were investigated on the preparation of Ni nanoparticles by the reduction of hydrazine. The nanoparticles obtained were characterized by X-ray diffractometry, dynamic light scattering as well as transmission and scanning electron microscopies. Several nickel salts proved to be applicable; however, only the bromide and iodide nickel halides could be transformed into metallic nickel form under room temperature. Their catalytic activities were also tested in the cross-coupling reaction between iodobenzene and phenylboronic acid, and it was found that most catalysts performed superbly. An experimentally supported explanation for the varying catalytic activities of Ni nanoparticles derived from various halide salts is offered. Furthermore, an unusual crystal rearrangement was observed during the catalytic tests.


Nickel nanoparticles Varying Ni salts Characterization Suzuki-Miyaura cross-coupling reaction 



This work was supported by the GINOP-2.3.2-15-2016-00013 grant. The financial help is highly appreciated.

Supplementary material

11144_2018_1526_MOESM1_ESM.docx (63 kb)
Supplementary material 1 (DOCX 63 kb)


  1. 1.
    Welch CM, Compton RG (2006) Anal Bioanal Chem 384:601–619CrossRefGoogle Scholar
  2. 2.
    Din MI, Rani A (2016) Int J Anal Chem 2016:3512145Google Scholar
  3. 3.
    Balci S, Balci O, Kakenov N, Bilge F, Kocabas C (2016) Optics Lett 41:1241–1244CrossRefGoogle Scholar
  4. 4.
    Kreuter J (2007) J Pharm 331:1–10Google Scholar
  5. 5.
    Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) J Phys D Appl Phys 36:R167–R181CrossRefGoogle Scholar
  6. 6.
    Du Y, Chen H, Chen R, Xu N (2004) Appl Catal 277:259–264CrossRefGoogle Scholar
  7. 7.
    Cho CS, Tran NT (2009) Catal Commun 11:191–195CrossRefGoogle Scholar
  8. 8.
    Zhang W, Qi H, Li L, Wang X, Chen J, Peng K, Wang Z (2009) Green Chem 11:1194–1200CrossRefGoogle Scholar
  9. 9.
    Alonso F, Riente P, Sirvent JA, Yus M (2010) Appl Catal 378:42–51CrossRefGoogle Scholar
  10. 10.
    Saito S, Sakai M, Miyaura N (1996) Tetrahedron Lett 37:2993–2996CrossRefGoogle Scholar
  11. 11.
    Wang W, Wang R, Wu F, Wan B (2005) React Kinet Catal Lett 85:277–282CrossRefGoogle Scholar
  12. 12.
    Ding J, Tsuzuki T, McCormick PG, Street R (1996) J Phys D Appl Phys 29:2365–2369CrossRefGoogle Scholar
  13. 13.
    Kim Y-M, Kim K-H, Choi H (2016) J Alloy Compd 658:824CrossRefGoogle Scholar
  14. 14.
    Wu S-H, Chen D-H (2003) J Colloid Interface Sci 259:282–286CrossRefGoogle Scholar
  15. 15.
    Tan KS, Cheong KY (2013) J Nanoparticle Res 15:1537CrossRefGoogle Scholar
  16. 16.
    Khanna PK, More PV, Jawalkar JP, Bharate BG (2009) Mater Lett 63:1384–1386CrossRefGoogle Scholar
  17. 17.
    Athanassiou EK, Grass RN, Stark WJ (2010) Aerosol Sci Technol 44:161–172CrossRefGoogle Scholar
  18. 18.
    Narayanan KB, Sakthivel N (2008) Mater Lett 62:4588–4590CrossRefGoogle Scholar
  19. 19.
    Krishnajar C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Coll Surf B 76:50–56CrossRefGoogle Scholar
  20. 20.
    LaGrow AP, Ingham B, Toney MF, Tilley RD (2013) J Phys Chem C 117:16709–16718CrossRefGoogle Scholar
  21. 21.
    Xiaodan L, Min G, Xidong W, Xiao G, Kuonchih C (2008) Rare Metal 27:642–647Google Scholar
  22. 22.
    Huaman JLC, Hironaka N, Tanaka S, Shinoda K, Miyamura H, Jeyadevan B (2013) CrystEngComm 15:729–737CrossRefGoogle Scholar
  23. 23.
    Wu ZG, Munoz M, Montero O (2010) Adv Powder Technol 21:165–168CrossRefGoogle Scholar
  24. 24.
    Druzhinia TS, Herzer N, Hoeppener S, Schubert US (2011) ChemPhysChem 12:781–784CrossRefGoogle Scholar
  25. 25.
    Xia B, Leggoro IW, Okuyama K (2001) J Mater Sci 36:1701CrossRefGoogle Scholar
  26. 26.
    Yang S-Y, Kim S-G (2004) Power Technol 146:185CrossRefGoogle Scholar
  27. 27.
    Che SL, Takada K, Takashima K, Sakurai O, Shinozaki K, Muzutani N (1999) J Mater Sci 34:1313CrossRefGoogle Scholar
  28. 28.
    Hou Y, Kondoh H, Ohta T, Gao S (2005) Appl Surf Sci 241:218–222CrossRefGoogle Scholar
  29. 29.
    Avramenko N, Blokhin V (1983) Koord Khim 9:658Google Scholar
  30. 30.
    Doe H, Kitagawa T (1982) Inorg Chem 21:2272–2276CrossRefGoogle Scholar
  31. 31.
    Libus W, Grzybkowski W (1987) Electrochim Acta 23:791CrossRefGoogle Scholar
  32. 32.
    Kowacz M, Groves P, Esperanca JMSS, Rebelo LPN (2011) J Am Chem Soc 11:684–691Google Scholar
  33. 33.
    Ali ESH, Nassar FI, Badawi AM, Afify SA (2010) Int J Genet Mol Biol 2:78–91Google Scholar
  34. 34.
    Carturan G, Cocco G, Enzo E, Ganzerla R, Lenarda M (1988) Mater Lett 7:47–50CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Department of Organic ChemistryUniversity of SzegedSzegedHungary
  2. 2.Material and Solution Structure Research Group, Institute of ChemistryUniversity of SzegedSzegedHungary
  3. 3.Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary
  4. 4.MTA-SZTE Reaction Kinetics and Surface Chemistry Research GroupSzegedHungary
  5. 5.Department of Inorganic and Analytical ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations