Advertisement

Reaction Kinetics, Mechanisms and Catalysis

, Volume 126, Issue 2, pp 903–919 | Cite as

Experimental and theoretical study on the kinetics and mechanism of the amine-catalyzed reaction of oxiranes with carboxylic acids

  • Yullia N. Bespalko
  • Elena N. ShvedEmail author
Article
  • 83 Downloads

Abstract

In this work, a systematic study on the kinetics and mechanism of ring-opening reaction of oxirane by carboxylic acid initiated by a tertiary amine is presented. Kinetic parameters of β-hydroxypropyl ester formation including reaction orders, rate constants, and activation energies were established at the temperature range 323–353 K. The experimental values of ΔH° and ΔS° are characteristic for the SN2-like processes. In the initial reaction system, the acid, oxirane and amine exist mainly as hydrogen-bonded complex acid-oxirane, free oxirane and free base. H-bonding was analyzed using IR-spectroscopy. The reaction pathways were examined by the density functional theory (DFT) method at the B3LYP/6-31+G** level. Optimized equilibrium configurations of transition states and corresponding activation parameters were established. In accordance to both experimental and theoretical approaches, it is reasonable to suggest that amine-catalyzed ring-opening reaction of oxirane by carboxylic acid is a series of parallel consecutive stages: (1) quaternization of tertiary amine by activated oxirane; (2) carboxylate anion participation in ring-opening of both nonactivated and activated oxirane. The kinetic model, which adequately describing all observations, is proposed.

Keywords

Oxirane Ring-opening Kinetics DFT calculations Mechanism 

Notes

Acknowledgements

Funding was provided by Ministry of Education and Science of Ukraine (Grant No. 0116U002519).

References

  1. 1.
    Wicks ZW, Jones FN, Pappas SP (2007) Organic coatings science and technology, 3rd edn. Wiley, HobokenCrossRefGoogle Scholar
  2. 2.
    Gilbert M (ed) (2016) Brydson’s plastics materials, 8th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  3. 3.
    Meninno S, Lattanzi S (2016) Chem Eur J 22:3632–3642CrossRefPubMedGoogle Scholar
  4. 4.
    Choi BS, Choi J, Bak S, Koo S (2015) Eur J Org Chem 3:514–524CrossRefGoogle Scholar
  5. 5.
    Blank WJ, He ZA, Picci M (2002) J Coat Technol 74:33–41CrossRefGoogle Scholar
  6. 6.
    Sinel’nikova MA, Shved EN (2014) Russ J Org Chem 50:332–336CrossRefGoogle Scholar
  7. 7.
    Kakiuchi H, Tanaka Y (1966) J Org Chem 31:1559–1564CrossRefGoogle Scholar
  8. 8.
    Tanaka Y (1967) J Org Chem 32:2405CrossRefGoogle Scholar
  9. 9.
    Mares F, Hetflejs J, Bazant V (1969) Collect Czech Chem Commun 34:3086–3097CrossRefGoogle Scholar
  10. 10.
    Hetflejs J, Mares F, Bazant V (1969) Collect Czech Chem Commun 34:3098–3109CrossRefGoogle Scholar
  11. 11.
    Shvets VF, Romashkin AV (1972) Kinet Katal 13:885–891Google Scholar
  12. 12.
    Ricci CG, Cabrera MI, Luna JA, Grau RJ (2002) Synlett 11:1811–1814Google Scholar
  13. 13.
    Brønsted JN, Pedersen KJ (1924) Stöchiometrie und verwandtschaftslehre. Z Phys Chem 108:185–235Google Scholar
  14. 14.
    Swain CG, Scott CB (1953) J Am Chem Soc 75:141–147CrossRefGoogle Scholar
  15. 15.
    Bakhtin S, Bespal’ko Y, Shved E (2016) Reac Kinet Mech Cat 119:139–148CrossRefGoogle Scholar
  16. 16.
    Cheng G-J, Zhang X, Chung LW, Xu L, Wu Y-D (2015) J Am Chem Soc 137:1706–1725CrossRefPubMedGoogle Scholar
  17. 17.
    Ly UQ, Pham M-P, Marks MJ, Truong TN (2017) J Comput Chem 38:1093–1102CrossRefPubMedGoogle Scholar
  18. 18.
    Bakhtin S, Shved E, Bespal’ko Y (2017) J Phys Org Chem 30:3717–3726CrossRefGoogle Scholar
  19. 19.
    Nikol’skii BP (ed) (1971) Spravochnik khimika (chemist’s handbook). Khimiya, MoscowGoogle Scholar
  20. 20.
    Perrin DD, Amarego WLF (1988) Purification of laboratory chemicals. Pergamon Press, OxfordGoogle Scholar
  21. 21.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  22. 22.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  23. 23.
    Becke AD (1993) J Chem Phys 93:5648–5652CrossRefGoogle Scholar
  24. 24.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  25. 25.
    Scott AP, Radom L (1996) J Phys Chem 100:16502–16513CrossRefGoogle Scholar
  26. 26.
    Bouteiller Y, Gillet J-C, Gregoire G, Schermann JP (2008) J Phys Chem A 112:11656–11660CrossRefPubMedGoogle Scholar
  27. 27.
    Gonzales C, Schlegel HB (1989) J Chem Phys 90:2154–2161CrossRefGoogle Scholar
  28. 28.
    McQuarrie DA (2000) Statistical Mechanics. University Science Books, SausalitoGoogle Scholar
  29. 29.
    Takao I (1979) Tetrahedron 35:299CrossRefGoogle Scholar
  30. 30.
    Derevyanko LI (1972) Ukr Khim Zh 38:771Google Scholar
  31. 31.
    Gordon AJ, Ford RA (1972) The chemist’s companion. Wiley, New YorkGoogle Scholar
  32. 32.
    Okovytyy S (2014) In: Gorb L, Kuzmin V, Muratov E (eds) Application of computational techniques in pharmacy and medicine, challenges and advances in computational chemistry and physics. Springer, DordrechtGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2019

Authors and Affiliations

  1. 1.Educational and Scientific Institute of ChemistryVasyl’ Stus Donetsk National UniversityVinnytsiaUkraine

Personalised recommendations