Skip to main content
Log in

Synthesis of beta zeolite with mesopores from a milk containing precursor and its performance in naphthalene isopropylation

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

The synthesis of micro-/mesoporous beta zeolite by employing a solid precursor was described and its activity in the isopropylation of naphthalene was tested. The precursor was prepared by spray-drying of a homogenous mixture of silica sol, polyaluminum chloride solution and acidophilus milk, the presence of the latter induced formation of mesopores. The volume of mesopores of the synthesized beta zeolites ranged from 0.13 to 0.6 cm3/g and strongly depended on the concentration of tetraethylammonium hydroxide (TEAOH) in the reaction mixtures at the hydrothermal synthesis. Micro-/mesoporous beta zeolites exhibit positive effects of mesopores on the naphtalene conversion in its isopropylation by isopropyl alcohol, by improving the availability of active sites. With an increasing volume of mesopores, the conversion of naphthalene proportionally increases from 12 up to 27% for the volume of mesopores 0.6 cm3/g, while the selectivity to isopropylnaphthalene decreases from 92 to 55–66% for beta zeolites with 0.15–0.45 cm3 of mesopores/g, followed by selectivity increase up to mesopore volume 0.6 cm3/g reaching 81% at conversion 27%. A yield of isopropylnaphthalene is increasing in the whole range, particularly when the volume of mesopores exceeds 0.4 cm3/g. A zeolite with the highest volume of mesopores provides 1.8 times higher yield of isopropylnaphthalene then a microporous beta zeolite without mesopores. The increasing conversion of naphthalene is accompanied by a decrease in the selectivity to isopropylnaphthalene for zeolites with a low volume of mesopores, but an increasing selectivity to isopropylnaphthalene in the case of zeolites with a volume of mesopores above 0.4 cm3/g. This unusual effect can be explained by the mesoporosity of zeolites. Mesopores improve the availability of active centers, so they react faster, but the by-products are also formed faster and later undesired reactions run more easily as active centers are gradually blocked by by-products. Zeolites with the largest pores provide not only better availability of active centers, but the reaction products can also leave the zeolitic phase more easily and undesirable reactions have less chance to occur. This method of micro/mesoporous beta zeolite synthesis is advantageous for its low cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Corma A, Grande MS, Gonzales Alfaro V, Orchiles AV (1996) J Catal 159:375

    Article  CAS  Google Scholar 

  2. Cassiers K, Linssen T, Mathieu M, Benjelloun M, Schrijnemakers K, van Der Voort P, Cool P, Vansant EF (2002) Chem Mater 14:2317–2324

    Article  CAS  Google Scholar 

  3. Martens JA, Jammaer J, Bajpe S, Aerts A, Lorgouilloux Y (2011) Microporous Mesoporous Mater 140:2–8

    Article  CAS  Google Scholar 

  4. Cejka J, van Bekkum H, Corma A, Schüth F (2007) Stud Surf Sci Catal 168:302

    Google Scholar 

  5. Moller K, Bein T (2013) Chem Soc Rev 42:3689–3707

    Article  Google Scholar 

  6. Liu Y, Pinnavaia TJ (2002) J Mater Chem 12:3179

    Article  CAS  Google Scholar 

  7. Liu Y, Zhang W, Pinnavaia TJ (2001) Angew. Chem Int Ed 7:40

    Google Scholar 

  8. Liu Y, Zhang W, Pinnavaia TJ (2000) Am Chem Soc 122:8791

    Article  CAS  Google Scholar 

  9. Xiao FS (2005) Top Catal 35:9

    Article  CAS  Google Scholar 

  10. Prokesova P, Mintova S, Čejka J, Bein T (2003) Mater Sci Eng C 23:1001–1005

    Article  Google Scholar 

  11. Tosheva L, Valtchev VP (2005) Chem Mater 17(10):2494–2513

    Article  CAS  Google Scholar 

  12. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Nature 461:246

    Article  CAS  Google Scholar 

  13. Corma A (2009) Nature 461:182

    Article  CAS  Google Scholar 

  14. Petushkov A, Yoon S, Larsen SC (2011) Microporous Mesoporous Mater 137:92–100

    Article  CAS  Google Scholar 

  15. Xue T, Chen L, Wang M, He MY (2012) Microporous Mesoporous Mater 156:97–105

    Article  CAS  Google Scholar 

  16. Larlus O, Mintova S, Wilson ST, Willis RR, Abrevaya H, Bein T (2011) Microporous Mesoporous Mater 142:17–25

    Article  CAS  Google Scholar 

  17. Botella P, Corma A, Lopez-Nieto JM, Valencia S, Jacquot R (2000) J Catal 195:161

    Article  CAS  Google Scholar 

  18. Cejka J, Mintova s (2007) Catal Rev Sci Eng 49(4):457–509

    Article  CAS  Google Scholar 

  19. Boisen A, Schmidt I, Carlsson A, Dahl S, Brorson M, Jacobsen CJH (2003) Chem Commun 8:958

    Article  Google Scholar 

  20. Janssen AH, Schmidt I, Jacobsen CJH, Koster AJ, de Jong KP (2003) Microporous Mesoporous Mater 65:59

    Article  CAS  Google Scholar 

  21. Martínez A, Peris E, Derewinski M, Burkat-Dulak A (2011) Catal Today 169(1):75–84

    Article  Google Scholar 

  22. Tao Y, Kanoh H, Hanzawa Y, Kaneko K (2004) Coll Surf A 241(1–3):75–80

    Article  CAS  Google Scholar 

  23. Chen G, Juany L, Wang L, Zhang J (2010) Microporous Mesoporous Mater 134:189–194

    Article  CAS  Google Scholar 

  24. Cho HS, Ryoo R (2012) Microporous Mesoporous Mater 151:107–112

    Article  CAS  Google Scholar 

  25. Kustova M, Egeblad K, Zhu K, Christensen CH (2007) Chem Mater 19:2915–2917

    Article  CAS  Google Scholar 

  26. Christensen CH, Zhu K, Kustova M, Egeblad K (2008) US 20080014140 A1

  27. Wang X, Li G, Wang W, Jin C, Chen Y (2011) Microporous Mesoporous Mater 142:494–502

    Article  CAS  Google Scholar 

  28. Sazama P, Wichterlova B, Dedecek J, Tvaruzkova Z, Musilova Z, Palubo L, Sklenak S, Gonsiorova O (2011) Microporous Mesoporous Mater 143:87–96

    Article  CAS  Google Scholar 

  29. Ogura M, Shinomiya SY, Tateno J, Nara Y, Kikuchi E, Matsukata H (2000) Chem Lett 8:882–883

    Article  Google Scholar 

  30. Groen JC, Pérez-Ramírez J, Peffer LAA (2002) Chem Lett 31(1):94

    Article  Google Scholar 

  31. Su L, Liu L, Zhuang J, Wang H, Li Y, Shen W, Xu Y, Bao X (2003) Catal Lett 91:155–167

    Article  CAS  Google Scholar 

  32. Yoo WC, Zhang X, Tspatsis M, Stein A (2012) Microporous Mesoporous Mater 149:147–157

    Article  CAS  Google Scholar 

  33. Caicedo-Realpe R, Pérez-Ramírez J (2010) Microporous Mesoporous Mater 128:91–100

    Article  CAS  Google Scholar 

  34. Yihui W, Tian F, Liu J, Song D, Jia C, Chen Y (2012) Microporous Mesoporous Mater 162:168–174

    Article  Google Scholar 

  35. Petushkov A, Merilis G, Larsen SC (2011) Microporous Mesoporous Mater 143:97–103

    Article  CAS  Google Scholar 

  36. Subhash SC, Venkatesan C, Sakthivel A, Komura K, Kim TH, Cho SJ, Huang SJ, Wu PH, Liu SB, Sasaki Y, Kobayashi M, Sugi Y (2010) Microporous Mesoporous Mater 133:82–90

    Article  Google Scholar 

  37. Ooi YS, Zakaria R, Mohamed AR, Bhatia S (2004) Appl Catal A 274:15–23

    Article  CAS  Google Scholar 

  38. Hould ND, Foster A, Lobo RF (2011) Microporous Mesoporous Mater 142:104–115

    Article  CAS  Google Scholar 

  39. Chichester CO (1986) Advances in Food Research. Academic Press, Boston

    Google Scholar 

Download references

Acknowledgements

This article is a result of the project “Development of the UniCRE Centre”, project Code LO1606, belonging to National Programme for Sustainability I of the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venceslava Tokarova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tokarova, V., Stavova, G., Novakova, J. et al. Synthesis of beta zeolite with mesopores from a milk containing precursor and its performance in naphthalene isopropylation. Reac Kinet Mech Cat 122, 343–356 (2017). https://doi.org/10.1007/s11144-017-1227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-017-1227-6

Keywords

Navigation