Advertisement

Radiophysics and Quantum Electronics

, Volume 62, Issue 5, pp 348–360 | Cite as

Nonlinear Wave Processes in Polycristalline Solids with Hysteresis-Loss Saturation and Relaxation

  • V. E. NazarovEmail author
  • S. B. Kiyashko
Article
  • 5 Downloads

Using the perturbation method, we study the processes of nonlinear propagation of the initially harmonic elastic waves in micro-inhomogeneous media, namely, polycrystalline solids with hysteresis-loss saturation and relaxation. The media with the basic hysteresis types, elastic and inelastic, are considered. The efficient nonlinearity parameters of such media are determined for the processes of self-action of a quasiharmonic wave and generation of its higher harmonics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).Google Scholar
  2. 2.
    O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics, Consultants Bureau, New York (1977).CrossRefGoogle Scholar
  3. 3.
    L. K. Zarembo and V. A. Krasil’nikov, Sov. Phys. Uspekhi, 13, No. 6, 778 (1971).ADSCrossRefGoogle Scholar
  4. 4.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Butterworth–Heinemann, Oxford (1987).Google Scholar
  5. 5.
    L. D. Landau and E. M. Lifshitz, Theory of Elasticity Butterworth-Heinemann, Oxford (1986).zbMATHGoogle Scholar
  6. 6.
    K. A. Naugol’nykh and L. A. Ostrovsky, Nonlinear Wave Processes in Acoustics, Cambridge Univ. Press, Cambridge (1998).Google Scholar
  7. 7.
    M. F. Hamilton and D. T. Blackstock, Nonlinear Acoustics, Academic Press, New York (1988).Google Scholar
  8. 8.
    M. A. Isakovich, General Acoustics [in Russian], Nauka, Moscow (1973).Google Scholar
  9. 9.
    S. N. Gurbatov, O. V. Rudenko, and A. I. Saichev, Waves and Structures in Nonlinear Nondispersive Media, Springer, Berlin (2011).zbMATHGoogle Scholar
  10. 10.
    V. E. Nazarov, L. A. Ostrovsky, I. A. Soustova, and A. M. Sutin, Phys. Earth Planet. Inter., 50, No. 1, 65 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    L. A. Ostrovsky and P. A. Johnson, Riv. Nuovo Cim., 24, Ser. 4, No. 7, 1 (2001).Google Scholar
  12. 12.
    O. V. Rudenko, Physics—Uspekhi ,49, No. 1, 69 (2006).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    R. A. Guyer and P. A. Johnson, Nonlinear Mesoscopic Elasticity: The Complex Behavior of Granular Media Including Rocks and Soil, Wiley-VCH, Weinheim (2009).CrossRefGoogle Scholar
  14. 14.
    V. E. Nazarov, Fiz. Met. Metalloved., 88, No. 4, 82 (1999).Google Scholar
  15. 15.
    V. E. Nazarov, Acoust. Phys., 46, No. 2, 186 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    V. E. Nazarov, A. V. Radostin, and I. A. Soustova, Acoust. Phys., 48, No. 1, 76 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    V. E. Nazarov and A. V. Radostin, Acoust. Phys., 50, No. 4, 446 (2004).ADSCrossRefGoogle Scholar
  18. 18.
    V. E. Nazarov, A. B. Kolpakov, and A. V. Radostin, Fiz. Mezomekh., 13, No. 2, 41 (2010).Google Scholar
  19. 19.
    V. E. Nazarov and A. V. Radostin, Nonlinear Acoustic Waves in Micro-Inhomogeneous Solids, Wiley, Hoboken (2015).Google Scholar
  20. 20.
    N. N. Davidenkov, Zh. Tekh. Fiz., 8, No. 6, 483 (1938).Google Scholar
  21. 21.
    A. V. Granato and K. J. Lücke, J. Appl. Phys., 27, No. 6, 583 (1956).ADSCrossRefGoogle Scholar
  22. 22.
    S. Asano, J. Phys. Soc. Jpn., 29, No. 4, 952 (1970).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    A. B. Lebedev, Phys. Solid State, 41, No. 7, 1105 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    V. E. Nazarov and A. V. Radostin, Fiz. Zemli, 413, No. 2, 85 (2003).Google Scholar
  25. 25.
    V. E. Nazarov and A. M. Sutin, Sov. Phys. Acoust., 35, No. 4, 410 (1989).Google Scholar
  26. 26.
    V. E. Nazarov, A. V. Radostin, L. A. Ostrovsky, and I. A. Soustova, Acoust. Phys., 49, No. 3, 344 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    V. E. Nazarov, V. Yu. Zaitsev, and I. Yu. Beliaeva, Acoust. Lett., 22, No. 12, 236 (1999).Google Scholar
  28. 28.
    V. E. Nazarov, V. Yu. Zaitsev, and I. Yu. Beliaeva, Acta Acust. United Ac., 88, No. 1, 40 (2002).Google Scholar
  29. 29.
    D. Niblett and J. Wilks, Usp. Fiz. Nauk, 80, No. 1, 125 (1963).CrossRefGoogle Scholar
  30. 30.
    V. E. Nazarov, Sov. Phys. Acoust., 37, No. 1, 75 (1991).Google Scholar
  31. 31.
    V. E. Nazarov and A. B. Kolpakov, J. Acoust. Soc. Am., 107, No. 4, 1915 (2000).ADSCrossRefGoogle Scholar
  32. 32.
    S. N. Golyandin, K. V. Sapozhnikov, Yu. A. Emel’yanov, et al., Phys. Solid State, 40, No. 10, 1667 (1998).ADSCrossRefGoogle Scholar
  33. 33.
    S. N. Golyandin, K. V. Sapozhnikov, and S. B. Kustov, Phys. Solid State, 47, No. 4, 638 (2005).ADSCrossRefGoogle Scholar
  34. 34.
    K. V. Sapozhnikov, S. N. Golyandin, and S. B. Kustov, Phys. Solid State, 52, No. 1, 43 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    K. V. Sapozhnikov, S. N. Golyandin, and S. B. Kustov, Phys. Solid State, 52, No. 12, 2501 (2010).ADSCrossRefGoogle Scholar
  36. 36.
    D. V. Sivukhin, General Course of Physics, Electricity [in Russian], Fizmatlit, Moscow (2004).Google Scholar
  37. 37.
    V. E. Nazarov and S. B. Kiyashko, Radiophys. Quantum Electron., 56, No. 10, 686 (2013).ADSCrossRefGoogle Scholar
  38. 38.
    V. E. Nazarov and S. B. Kiyashko, Radiophys. Quantum Electron., 59, No. 2, 111 (2016).ADSCrossRefGoogle Scholar
  39. 39.
    V. E. Nazarov, A. V. Radostin, L. A. Ostrovsky, and I. A. Soustova, Acoust. Phys., 49, No. 4, 444 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations