Advertisement

Optimization of a High-Power Subterahertz Gyrotron Tunable in a Wide Frequency Range Allowing for the Limitations Imposed by the Magnetic System

  • A. S. ZuevEmail author
  • V. E. Zapevalov
  • O. P. Plankin
  • E. S. Semenov
Article

We present a version of the frequency-tunable gyrotron operating in a wide frequency range (0.1–0.26 THz) with an output radiation power of up to 260 kW. Multilevel analysis and combined optimization of its electron-optical and electrodynamical systems are performed. The gyrotron is designed for operation with the JASTEC-10T100 cryomagnet or its analogs. Efficiency of single-stage recovery in this system is analyzed. A collector system is proposed, which is capable of collecting electron beams effectively during gyrotron operation in the entire specified frequency range.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Bratman, A. G. Litvak, and E. V. Suvorov, Phys. Usp., 54, No. 8, 837 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    M. Yu. Glyavin, G. G. Denisov, V. E. Zapevalov, et al., Phys. Usp., 59, No. 6, 595 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    O. Dumbrajs, J. A. Heikkinen, and H. Zohm, Nuclear Fusion, 41, No. 7, 927 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    G. S. Nusinovich, Introduction to the Physics of Gyrotrons, The Johns Hopkins Univ. Press, Baltimore (2004).Google Scholar
  5. 5.
    G. S. Nusinovich, M. K. A. Thumm, and M. I. Petelin, J. Infrared, Millimeter, Terahertz Waves, 35, No. 4, 325 (2014).CrossRefGoogle Scholar
  6. 6.
    G. F. Brand, N. G. Douglas, M. Gross, et al., Int. J. Infrared and Millimeter Waves, 3, No. 5, 725 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    K. D. Hong, G. F. Brand, and T. Idehara, J. Applied Physics, 74, No. 8, 5250 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    T. Idehara, I. Ogawa, S. Mitsudo, et al., IEEE Trans. Plasma Sci., 27, No. 2, 340 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    V. E. Zapevalov, A. A. Bogdashov, G. G. Denisov, et al., Radiophys. Quantum Electron., 47, Nos. 5–6, 396 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    M. Thumm, A. Arnold, E. Borie, et al., Fusion Engineering and Design, 53, 407 (2001).CrossRefGoogle Scholar
  11. 11.
    K. Koppenburg, G. Dammertz, M. Kutze, et al., IEEE Trans. Elec. Dev., 48, No. 1, 101 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    S. Pan, C.-H. Du, X.-B. Qi, and P.-K. Liu, Scientific Reports, 7, No. 1, 7265 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    M. Yu. Glyavin, A. V. Chirkov, G. G. Denisov, et al., Rev. Sci. Instr., 86, No. 5, 054705 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    Sh. E. Tsimring, Introduction to High-Frequency Vacuum Electronics and Physics of Electron Beams [in Russian], Inst. Appl. Phys., Russ. Acad. Sci, Nizhny Novgorod (2012).Google Scholar
  15. 15.
    A. V. Chirkov, G. G. Denisov, A. N. Kuftin, et al., Tech. Phys. Lett., 33, No. 4, 350 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Chirkov, G. G. Denisov, and A. N. Kuftin, Appl. Phys. Lett., 106, No. 26, 263501 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    O. P. Plankin and E. S. Semenov, Vestnik Novosib. Gos. Univ. Ser. Fiz., 8, No. 2, 44 (2013).Google Scholar
  18. 18.
    V. E. Zapevalov, A. N. Kuftin, and V. K. Lygin, Radiophys. Quantum Electron., 50, No. 9, 702 (2007).ADSCrossRefGoogle Scholar
  19. 19.
    V. N. Manuilov and V. E. Semenov, Radiophys. Quantum Electron., 59, No. 1, 33 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    N. A. Zavolsky, V. E. Zapevalov, and M. A. Moiseev, Radiophys. Quantum Electron., 44, No. 4, 318 (2001).CrossRefGoogle Scholar
  21. 21.
    G. G. Denisov, M. Yu. Glyavin, A. P. Fokin, et al., Rev. Sci. Instr., 89, No. 8, 084702 (2018).ADSCrossRefGoogle Scholar
  22. 22.
    A. Sh. Fix, V. A. Flyagin, A. L. Goldenbedg, et al., Int. J. Electronics, 57, No. 6, 821 (1984).CrossRefGoogle Scholar
  23. 23.
    K. Sakamoto, M. Tsuneoka, A. Kasugai, et al., Phys. Rev. Lett., 73, No. 26, 3532 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    V. E. Zapevalov, Yu. K. Kalynov, V. K. Lygin, et al., Radiophys. Quantum Electron., 49, No. 3, 185 (2006).ADSCrossRefGoogle Scholar
  25. 25.
    M. Yu. Glyavin, G. G. Denisov, V. E. Zapevalov, et al., Radiophys. Quantum Electron., 58, No. 9, 649 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. S. Zuev
    • 1
    Email author
  • V. E. Zapevalov
    • 1
  • O. P. Plankin
    • 1
  • E. S. Semenov
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations