Volume Heating of a Vertical Air Column by Microwave Radiation in the Atmospheric Absorption Line

  • A. F. Krupnov
  • M. Yu. TretyakovEmail author

We propose a method of volume heating of a vertical air column by the vertically directed microwave radiation at the frequency of the spectral atmospheric-absorption line. The heating efficiency is estimated for the case of the molecular-oxygen absorption band near a frequency of 60 GHz. The proposed heating method can lead to the formation of new convection structures in an air column. Absence of natural ascending airflows with stationary heating over the entire flow length is noted.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Dessens and J. Vaillant, Comptes rendus de l’Academie des Sci., 256, 1818 (1963).Google Scholar
  2. 2.
    J. Dessens, Nature, 193, 4810 (1962).CrossRefGoogle Scholar
  3. 3.
    C. R. Church, J. T. Snow, and J. Dessens, Bull. Am. Meteorol. Soc., 61, No. 7, 682 (1980).ADSCrossRefGoogle Scholar
  4. 4.
    J. T. Snow, Rev. Geophys., 25, 371 (1987).ADSCrossRefGoogle Scholar
  5. 5.
    B. Benech, J. Appl. Meteorol. Climatol., 15, No. 1, 127 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Kuznetsov and N. G. Konopasov, Meteotron. Book 1. Research Complex [in Russian], Izd. Vladimir State Univ., Vladimir (2015).Google Scholar
  7. 7.
    A. A. Kuznetsov and N. G. Konopasov, Meteotron. Book 2. Experiments. Observations. Registrations [in Russian], Izd. Vladimir State Univ.., Vladimir (2015), p. 232.Google Scholar
  8. 8.
    C. H. Townes and A. L. Shawlow, Microwave Spectroscopy, McGrow Hill, New York (1955).Google Scholar
  9. 9.
    M. Yu. Tret’yakov, High-Precision Resonator Spectroscopy of Atmospheric Gases in Millimeter- and Submillimeter-Wave Ranges [in Russian], Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod (2016).Google Scholar
  10. 10.
    L. Prandtl, F’uhrer durch die Str’omungslehre [in German], Hafner, New York (1952).Google Scholar
  11. 11.
    H. J. Liebe and D. H. Layton, NTIA Report 87-224, Millimeter-Wave Properties of Atmosphere: Laboratory Studies and Propagation Modeling, Institute for Telecommunication Studies, Boulder, CO, US Department of Commerce, (1987).Google Scholar
  12. 12.
    J. F. Shively, R. E. Bier, M. Caplan, et al., Final Report 60 GHz Gyrotron Development Program 1979–1984. ORNL/Sub/79-21453/21. Varian Associates, Inc., Palo Alto, CA (USA) (1986).Google Scholar
  13. 13.
  14. 14.
    T. Karya, T. Imai, R. Minami, et al., Nuclear Fusion, 57, No. 6, 066001 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    G. S. Nusinovich, M. K.A. Thumm, and M. I. Petelin, J. Infrar. Millim. Terahertz Waves, 35, No. 4, 325 (2014).CrossRefGoogle Scholar
  16. 16.
    A. Kasugai, K. Sakamoto, K. Takahashi, et al., Nucl. Fusion, 48, No. 5, 054009 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    S. N. Bogdanov, S. I. Burtsev, O. P. Ivanov, and A. V. Kupriyanova, Refrigerating Engineering. Air Conditioning. Properties of Materials [in Russian], S. N. Bogdanov ed., Handbook, the 4th Revised and Enlarged edition, St.-Petersburg State Academy of Cold and Food Technologies (1999).Google Scholar
  18. 18.
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon, New York (1987).Google Scholar
  19. 19.
    B. Cushman-Roisin, Environmental Fluid Mechanics, John Wiley & Sons, NY (2019).Google Scholar
  20. 20.
  21. 21.
    I. I. Antakov, S. P. Belov, L. I. Gershtein, et al., JETP Lett., 19, No. 10, 329 (1974).ADSGoogle Scholar
  22. 22.
    S. M. Shmeter, in: A. M. Prokhorov, ed., Great Soviet Encyclopedia [in Russian], Vol. 10, Sovetskaya Entsiklopedia, Moscow (1972), p. 176.Google Scholar
  23. 23.
    S. P. Belov, A. V. Burenin, et al., Opt. Spectrosc., 35, No. 2, 172 (1973).Google Scholar
  24. 24.
    A. P. Fokin, M. Yu. Glyavin, G. Yu. Golubyatnikov, et al., Nat. Sci. Rep., 8, 4317 (2018).ADSCrossRefGoogle Scholar
  25. 25.
  26. 26.
    L. F. Chernogor, Izv. Atmos. Oceanic Phys, 54, No. 6, 528 (2018).ADSCrossRefGoogle Scholar
  27. 27.
    O. Onishchenko, O. Pokhotelov, W. Horton, and V. Fedun, Ann. Geophys., 33, No. 11, 1343 (2015).ADSCrossRefGoogle Scholar
  28. 28.
    O. G. Onishchenko, W. Horton, O. A. Pokhotelov, and V. Fedun, J. Geoph. Res.: Atmos., 121, No. 19, 11264 (2016).ADSGoogle Scholar
  29. 29.
    W. Horton, H. Miura, O. Onishchenko, et al., J. Geoph. Res.: Atmos., 121, No. 12, 7197 (2016).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations