Advertisement

Compensation for the Influence of Fluctuations in the Distance to the Object During Noncontact Probing in Spectral Domain Optical Coherence Tomography

  • G. V. GelikonovEmail author
  • S. Yu. Ksenofontov
  • P. A. Shilyagin
  • V. M. Gelikonov
Article
  • 4 Downloads

We propose and experimentally test a numerical method for correction of the influence of fluctuations in the distance to objects during noncontact probing in optical coherence tomography. The method is based on the analysis of phase shifts of the neighboring scans, which are due to microscale displacements, and further compensation for these displacements by using phasefrequency correction in the spectral domain. Unlike the known correlation methods, the proposed method does not distort the represented shape of the object surface. Its operability is demonstrated in model experiments in the cases of harmonic and random types of the motion of the scattering object, as well as in vivo imaging of the structures of the human middle ear.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. F. Fercher, C.K. Hitzenberger, G. Kamp, et al., Opt. Commun., 117, Nos. 1–2, 43 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    V. M. Gelikonov, G.V.Gelikonov, D.A.Terpelov, et al., Instrum. Exp. Tech., 55, No. 3, 392 (2012).CrossRefGoogle Scholar
  3. 3.
    H. Rajabi and A. Zirak, Biomed. Phys. Engineering Express, 2, No. 3, 035012 (2016).CrossRefGoogle Scholar
  4. 4.
    W. Kang, H. Wang, Z. Wang, et al., Opt. Express, 19, No. 21, 20722 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    R. de Kinkelder, J. Kalkman, D. J. Faber, et al., Invest. Ophthalmol. Vis. Sci., 52, No. 6, 3908 (2011).CrossRefGoogle Scholar
  6. 6.
    R. J. Zawadzki and D. T. Miller, in: Optical Coherence Tomography: Technology and Applications, Springer, Cham (2015), p. 1849.CrossRefGoogle Scholar
  7. 7.
    V. M. Gelikonov, G.V.Gelikonov, and P. A. Shilyagin, Bull. Russ. Acad. Sci. Phys., 72, No. 1, 93 (2008).Google Scholar
  8. 8.
    ANSI Z136.1–2014: American National Standard for Safe Use of Lasers, Laser Inst. Am., Orlando (2014).Google Scholar
  9. 9.
    State Standard IEC 60825-1–2013: Laser Equipment Safety, P. 1. Classification of Equipment, Requirements, and User’s Manual [in Russian], Standartinform, Moscow (2014).Google Scholar
  10. 10.
    O. M.Carrasco-Zevallos, D. Nankivil, C. Viehland, et al., PLOS ONE, 11, No. 8, e0162015 (2016).CrossRefGoogle Scholar
  11. 11.
    B. Braaf, K.V. Vienola, C. K. Sheehy, et al., Biomed. Opt. Express, 4, No. 1, 51 (2013).CrossRefGoogle Scholar
  12. 12.
    Z. Chen, Y. Shen Y., Bao W., et al., Opt. Express, 25, No. 6, 7069 (2017).Google Scholar
  13. 13.
    M. F. Kraus, B. Potsaid, M. A. Mayer, et al., Biomed. Opt. Express, 3, No. 6, 1182 (2012).CrossRefGoogle Scholar
  14. 14.
    A. Montuoro, J. Wu, S. Waldstein, et al., in: Int. Conf. Medical Image Computing and Computer-Assisted Intervention, Springer, Cham (2014), p. 130.Google Scholar
  15. 15.
    A. Camino, M. Zhang, S. S. Gao, et al., Biomed. Opt. Express, 7, No. 10, 3905 (2016).CrossRefGoogle Scholar
  16. 16.
    A. Lang, A. Carass, O. Al-Louzi, et al., SPIE Proc., 79784, 97840X (2016).Google Scholar
  17. 17.
    Y. Watanabe, Y. Takahashi, and H. Numazawa, J. Biomed. Opt., 19, No. 2, 021105 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    N.D. Shemonski, S. S. Ahn, Y.-Z. Liu, et al., Biomed. Opt. Express, 5, No. 12, 4131 (2014).CrossRefGoogle Scholar
  19. 19.
    J. Lee, V. Srinivasan, H. Radhakrishnan, et al., Opt. Express, 19, No. 22, 21258 (2011).ADSCrossRefGoogle Scholar
  20. 20.
    Z. Hu and A.M.Rollins, Opt. Lett., 32, No. 24, 3525 (2007).ADSCrossRefGoogle Scholar
  21. 21.
    V. M. Gelikonov, G.V.Gelikonov, and P. A. Shilyagin, Opt. Spectrosc., 106, No. 3, 459 (106).Google Scholar
  22. 22.
    P. A. Shilyagin, S. Yu. Ksenofontov, A.A.Moiseev, et al., Radiophys. Quantum Electron., 60, No. 10, 769 (2017).ADSCrossRefGoogle Scholar
  23. 23.
    D. A. Terpelov, S. Yu. Ksenofontov, G. V. Gelikonov, et al., Instrum. Exp. Tech., 60, No. 6, 868 (2017).CrossRefGoogle Scholar
  24. 24.
    R. A. Leitgeb and M. Wojtkowski, Optical Coherence Tomography: Techology and Applications, Springer, Berlin (2008), p. 177.CrossRefGoogle Scholar
  25. 25.
    V. M. Gelikonov, G.V.Gelikonov, I.V.Kasatkina et al., Opt. Spectrosc., 106, No. 6, 895 (2009).ADSCrossRefGoogle Scholar
  26. 26.
    J. Ai and L.V.Wang, Opt. Lett., 30, No. 21, 2939 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    R. A. Leitgeb, C.K. Hitzenberger, A. F. Fercher, et al., Opt. Lett., 28, No. 22, 2201 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    J. Zhang, J. S. Nelson, and Z. Chen, Opt. Lett., 30, No. 2, 147 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    V. M. Gelikonov, G.V.Gelikonov, D.A.Terpelov, et al., Quantum Electron., 42, No. 5, 390 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    V. A. Matkivsky, A. A. Moiseev, S.Y.Ksenofontov, et al., Frontiers Optoelectron., 10, No. 3, 323 (2017).CrossRefGoogle Scholar
  31. 31.
    G. V. Gelikonov and V.M.Gelikonov, Radiophys. Quantum Electron., 61, No. 2, 135 (2018).ADSCrossRefGoogle Scholar
  32. 32.
    P. A. Shilyagin, G. V. Gelikonov, V.M.Gelikonov, et al., Quantum Electron., 44, No. 7, 664 (2014).ADSCrossRefGoogle Scholar
  33. 33.
    P. A. Shilyagin, L. A. Matveev, E.B.Kiseleva, et al., Sovrem. Tekhnol. Med., 11, No. 2, 25 (2019).CrossRefGoogle Scholar
  34. 34.
    G. S. Gorelik, Oscillations and Waves [in Russian], Fizmatlit, Moscow (1959).Google Scholar
  35. 35.
    A. Moiseev, S. Ksenofontov, M. Sirotkina, et al., J. Biophoton., 11, No. 10, e201700292 (2018).CrossRefGoogle Scholar
  36. 36.
    L. A. Matveev, V.Y. Zaitsev, G.V.Gelikonov, et al., Opt. Lett., 40, No. 7, 1472 (2015).ADSCrossRefGoogle Scholar
  37. 37.
    V. Y. Zaitsev, A. L. Matveev, L.A.Matveev, et al., J. Biomed. Opt., 20, No. 7, 075006 (2015).ADSCrossRefGoogle Scholar
  38. 38.
    S. N. Bagayev, V. M. Gelikonov, G.V.Gelikonov, et al., J. Biomed. Opt., 7, No. 4, 633 (2002).ADSCrossRefGoogle Scholar
  39. 39.
    L. Huo, J. Xi, Y. Wu, et al., Opt. Express, 18, No. 14, 14375 (2010).ADSCrossRefGoogle Scholar
  40. 40.
    S. Moon, S.-W. Lee, M. Rubinstein, et al., Opt. Express, 18, No. 20, 21183 (2010).ADSCrossRefGoogle Scholar
  41. 41.
    H.-C. Park, Y.-H. Seo, K.-H. Jeong, Opt. Express, 22, No. 5, 5818 (2014).ADSCrossRefGoogle Scholar
  42. 42.
    Y. Chen, Y.-J. Hong, S. Makita, et al., Biomed. Opt. Express, 8, No. 3, 1783 (2017).CrossRefGoogle Scholar
  43. 43.
    Y. Chen, Y.-J. Hong, S. Makita, et al., Biomed. Opt. Express, 9, No. 3, 1111 (2018).CrossRefGoogle Scholar
  44. 44.
    B. C. Chauhan, K. T. Stevens, J.M. Levesque, et al., PLOS ONE, 7, No. 6, e40352 (2012).ADSCrossRefGoogle Scholar
  45. 45.
    G. Taibbi, G. C. Peterson, M. F. Syed, et al., Invest. Ophthalmol. Vis. Sci., 55, No. 4, 2251 (2014).CrossRefGoogle Scholar
  46. 46.
    H. G. Bezerra, M. A. Costa, G. Guagliumi, et al., Clinical Res. Appl., 2, No. 11, 1035 (2009).Google Scholar
  47. 47.
    S. Yu. Ksenofontov and T. V. Vasilenkova, “Way for optimizing the maximum intensity projection method for visualization of scalar three-dimensional data in the static regime, interactive regime, and real time,” Russian Federation Patent No. 2533055, Bull. No. 32 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • G. V. Gelikonov
    • 1
    Email author
  • S. Yu. Ksenofontov
    • 1
  • P. A. Shilyagin
    • 1
  • V. M. Gelikonov
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations