Advertisement

Radiophysics and Quantum Electronics

, Volume 62, Issue 3, pp 218–227 | Cite as

A Method of Separate Optimization of a Multistage Relay Mimo System

  • E. A. Mavrychev
  • A. V. Elokhin
  • I. S. Sorokin
  • A. G. FlaksmanEmail author
Article
  • 8 Downloads

We propose a quasioptimal method of separate optimization in a multistage relay MIMO system, which is based on optimization of the root-mean-square error between the input and output signals successively for each transmission stage. Rigorous analytical expressions for the spatial coding and decoding matrices are obtained. Separate optimization simplifies the system construction due to a significant reduction in the number of auxiliary (service) communication links, which are necessary for transmitting the channel information, compared with the joint optimization. The simulation results show the high efficiency of the proposed method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Sanguinetti, A. A. d’Amico, and Y. Rong, IEEE J. Sel. Areas Commun., 30, No. 8, 1331 (2012).CrossRefGoogle Scholar
  2. 2.
    G. Kramer, M. Gastpar, and P. Gupta, IEEE Trans. Inf. Theory, 51, No. 9, 3037 (2005).CrossRefGoogle Scholar
  3. 3.
    R. Mo and Y. H. Chew, IEEE Trans. Wireless Commun., 81, No. 9, 4668 (2009).CrossRefGoogle Scholar
  4. 4.
    Y. Rong, X. Tang, and Y. Hua, IEEE Trans. Sign. Process, 57, No. 12, 4837 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    S. Borade, L. Zheng, and R. Gallager, IEEE Trans. Inf. Theory, 53, No. 10, 3302 (2007).CrossRefGoogle Scholar
  6. 6.
    M. O. Hasna and M. S. Alouini, IEEE Trans. Wireless Commun., 2, No. 10, 1126 (2003).CrossRefGoogle Scholar
  7. 7.
    I. Krikidis, J. S. Thompson, S. MacLaughlin, and N. Goertz, IEEE Trans. Wireless Commun., 8, No. 6, 3016 (2009).CrossRefGoogle Scholar
  8. 8.
    D. P. Palomar, J. M. Cioffi, and M. A. Lagunas, IEEE Trans. Sign. Process, 51, No. 9, 2381 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    D. P. Palomar, M. A. Lagunas, and J. M. Cioffi, IEEE Trans. Sign. Process, 52, No. 5, 1179 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    A. Scaglione, P. Stoica, S. Barbarossa, et al., IEEE Trans. Sign. Process, 50, No. 5, 1051 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    V. T. Ermolayev, E. A. Mavrychev, and A. G. Flaksman, Radiophys. Quantum Electron., 46, No. 3, 224 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    V. T. Ermolayev and A. G. Flaksman, Theoretical Fundamentals of Signal Processing in Wireless Communication Systems [in Russian], Nizhny Novgorod State Univer., Nizhny Novgorod (2011).Google Scholar
  13. 13.
    Y. Rong and Y. Hua, IEEE Trans. Wireless Commun., 8, No. 12, 6068 (2009).CrossRefGoogle Scholar
  14. 14.
    C. Song, K.-J. Lee, and I. Lee, IEEE Trans. Wireless Commun., 9, No. 7, 2310 (2010).CrossRefGoogle Scholar
  15. 15.
    F. R. Gantmakher, Theory of Matrices [in Russian], Nauka, Moscow (1988).Google Scholar
  16. 16.
    A. A. Danilov and E. A. Mavrychev, in: 17th Int. ITG Workshop on Smart Antennas, Stuttgart, Germany. March 13–14, 2013, p.1.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. A. Mavrychev
    • 1
  • A. V. Elokhin
    • 2
  • I. S. Sorokin
    • 2
  • A. G. Flaksman
    • 2
    Email author
  1. 1.R. E. Alekseev Nizhny Novgorod State Technical UniversityNizhny NovgorodRussia
  2. 2.N. I. Lobachevsky Nizhny Novgorod State UniversityNizhny NovgorodRussia

Personalised recommendations