Advertisement

Elimination of Artifacts Caused by the Nonidentity of Parallel Signal-Reception Channels in Spectral Domain Optical Coherence Tomography

  • S. Yu. KsenofontovEmail author
  • D. A. Terpelov
  • G. V. Gelikonov
  • P. A. Shilyagin
  • V. M. Gelikonov
Article
  • 2 Downloads

We study the causes of artifact appearance in the images obtained by the method of spectral domain optical coherence tomography with parallel reception of the optical-spectrum components, which are manifested in repetition and overlay of the structural elements of the images of the studied medium with a shift in depth. It is shown that nonidentity of the transfer characteristics of the channels of the multichannel photoreceiving elements is one of the sources of such artifacts. A numerical method for eliminating such artifacts is proposed and experimentally verified. This method is based on using the models whose parameters are estimated by the recorded signal and does not require a priori information on the transfer characteristics of the channels. The method efficiency is demonstrated during the experiments on the in vivo visualization of the human middle-ear elements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Fujimoto and E. Swanson, Investig. Ophthalm. Vis. Sci., 57, No. 9, OCT1 (2016).CrossRefGoogle Scholar
  2. 2.
    D. Huang, E. A. Swanson, C.P. Lin, et al., Science, 254, 1178 (1991).ADSCrossRefGoogle Scholar
  3. 3.
    A. F. Fercher, C.K. Hitzenberger, G. Kamp, et al., Opt. Commun., 117, Nos. 1–2, 43 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    M.A. Choma, M.V. Sarunic, C. Yang, et al., Opt. Express, 11, No. 18, 2183 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    R. A. Leitgeb and M. Wojtkowski, in: J.G. Fujimoto and W. Drexler, eds., Optical Coherence Tomography: Technology and Applications, Springer, Berlin (2008), p. 177.CrossRefGoogle Scholar
  6. 6.
    A. V. Maslennikova, M.A. Sirotkina, A.A. Moiseev, et al., Sci. Rep., 7, No. 11, 16505 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    A. Moiseev, S. Ksenofontov, M. Sirotkina, et al., J. Biophoton., 11, No. 10, e201700292 (2018).CrossRefGoogle Scholar
  8. 8.
    G. V. Gelikonov, A.A. Moiseev, S.Y. Ksenofontov, et al., Proc. SPIE, 10591, 1059107 (2018).Google Scholar
  9. 9.
    A. D. Drake and D.C. Leiner, Rev. Sci. Instrum., 55, No. 2, 162 (1984).ADSCrossRefGoogle Scholar
  10. 10.
    A. F. Fercher, K. Mengedoht, and W. Werner, Opt. Lett., 13, 186 (1988).ADSCrossRefGoogle Scholar
  11. 11.
    V. V. Ivanov, M.A. Novikov, A.D. Tertyshnik, et al., Proc. SPIE, 4900, 548 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    F. Feldchtein, J. Bush, G. Gelikonov, et al., Proc. SPIE, 5690, 349 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    V. M. Gelikonov and G.V. Gelikonov, Laser Phys. Lett., 3, No. 9, 445 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    V. M. Gelikonov, G.V. Gelikonov, D.A. Terpelov, and P.A. Shilyagin, Instrum. Exp. Tech., 55, No. 3, 392 (2012).CrossRefGoogle Scholar
  15. 15.
    P.A. Shilyagin, S.Yu. Ksenofontov, A.A. Moiseev, et al., Radiophys. Quantum Electron., 60, No. 10, 769 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    V. M. Gelikonov, I.V. Kasatkina, and P. A. Shilyagin, Radiophys. Quantum Electron., 52, No. 11, 810 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    V. M. Gelikonov, G.V. Gelikonov, I.V. Kasatkina, et al., Opt. Spectrosc., 106, No. 6, 895 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    R.K. Wang, Phys. Med. Biol., 52, No. 19, 5897 (2007).CrossRefGoogle Scholar
  19. 19.
    X. Ding, J. Li, J. Zeng, et al., Investig. Ophthalm. Vis. Sci., 52, No. 13, 9555 (2011).CrossRefGoogle Scholar
  20. 20.
    G. Querques, R. Lattanzio, L. Querques, et al., Investig. Ophthalm. Vis. Sci., 53, No. 10, 6017 (2012).CrossRefGoogle Scholar
  21. 21.
    J. Zeng, J. Li, R. Liu, et al., Ophthalmology, 119, No. 11, 2328 (2012).CrossRefGoogle Scholar
  22. 22.
    F.T. da Silva, V. M. Sakata, A. Nakashima, et al., Brit. J. Ophthalm., 97, No. 1, 70 (2013).CrossRefGoogle Scholar
  23. 23.
    M. Zhou, W. Wang, X. Ding, et al., Investig. Ophthalm. Vis. Sci., 54, No. 3, 1971 (2013).CrossRefGoogle Scholar
  24. 24.
    L. Yang, J.B. Jonas, and W. Wei, Investig. Ophthalm. Vis. Sci., 54, No. 7, 4659 (2013).CrossRefGoogle Scholar
  25. 25.
    H. Danesh, R. Kafieh, H. Rabbani, et al., Comput. Math. Met. Med., 2014, 479268 (2014).Google Scholar
  26. 26.
    M.O. Akdemir, O. Ayar, S. Yazgan, et al., Revista Brasil. Oftalm., 74, 345 (2015).CrossRefGoogle Scholar
  27. 27.
    P. Gupta, S.G. Thakku, S.-M. Saw, et al., Am. J. Ophthalm., 177, 27 (2017).CrossRefGoogle Scholar
  28. 28.
    C. Zuo, L. Mi, S. Yang, et al., Sci. Rep., 7, No. 1, 8464 (2017).ADSCrossRefGoogle Scholar
  29. 29.
    D. A. Terpelov, S.Yu. Ksenofontov, G. V. Gelikonov, et al., Instrum. Exp. Tech., 60, No. 6, 868 (2017).CrossRefGoogle Scholar
  30. 30.
    P.A. Shilyagin, A.A. Novozhilov, T. E. Abubakirov, et al., Laser Phys. Lett., 15, No. 9, 096201 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • S. Yu. Ksenofontov
    • 1
    Email author
  • D. A. Terpelov
    • 1
  • G. V. Gelikonov
    • 1
  • P. A. Shilyagin
    • 1
  • V. M. Gelikonov
    • 1
  1. 1.Institute of Applied Physics of the Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations